A Three-Coil Setup for Controlled Divergence in Magnetic Nozzle

被引:16
作者
Malik, Lohit [1 ,2 ]
Kumar, Mayank [3 ]
Singh, Indra Vir [4 ]
机构
[1] Netaji Subhas Inst Technol, Div Mfg Proc & Automat Engn, New Delhi 110078, India
[2] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08540 USA
[3] IIT Delhi, Dept Mech Engn, New Delhi 110016, India
[4] IIT Roorkee, Dept Mech & Ind Engn, Roorkee 247667, Uttar Pradesh, India
关键词
Plasmas; Solenoids; Magnetic analysis; Matlab; Propulsion; Attitude control; Aerospace electronics; Divergence angle; magnetic field; magnetic nozzle; semianalytical numerical method; thick coils; thrust; FIELD; PLASMA; PROPAGATION; SOLITON; GAS;
D O I
10.1109/TPS.2021.3090457
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Magnetic nozzles with their contactless feature have opened new grounds for long-distance space travels. For quicker mission completions along with improving system reliability, it becomes necessary to design robust systems that exhibit the ability to confine thrust. A semianalytical numerical method is proposed for rapid and assumption-less calculations of the magnetic field because of a thick coil with rectangular cross section. The method is extended for the proposal of a three-coil setup, where divergence angle of the magnetic field lines is readily controlled in-flight to provide the flexibility to modify the output magnetic thrust and the nozzle's efficiency.
引用
收藏
页码:2227 / 2237
页数:11
相关论文
共 39 条
  • [1] Ambipolar acceleration of ions in a magnetic nozzle
    Arefiev, Alexey V.
    Breizman, Boris N.
    [J]. PHYSICS OF PLASMAS, 2008, 15 (04)
  • [2] ANALYTICAL CALCULATION OF THE 3D MAGNETOSTATIC FIELD OF A TORROIDAL CONDUCTOR WITH RECTANGULAR CROSS-SECTION
    BABIC, S
    ANDJELIC, Z
    KRSTAJIC, B
    SALON, S
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 1988, 24 (06) : 3162 - 3164
  • [3] Collimated protons accelerated from an overdense gas jet irradiated by a 1 μm wavelength high-intensity short-pulse laser
    Chen, S. N.
    Vranic, M.
    Gangolf, T.
    Boella, E.
    Antici, P.
    Bailly-Grandvaux, M.
    Loiseau, P.
    Pepin, H.
    Revet, G.
    Santos, J. J.
    Schroer, A. M.
    Starodubtsev, Mikhail
    Willi, O.
    Silva, L. O.
    d'Humieres, E.
    Fuchs, J.
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [4] Electric potential barriers in the magnetic nozzle
    Chen, Zhiyuan
    Wang, Yibai
    Tang, Haibin
    Ren, Junxue
    Li, Min
    Zhang, Zhe
    Cao, Shuai
    Cao, Jinbin
    [J]. PHYSICAL REVIEW E, 2020, 101 (05)
  • [5] Magnetic nozzle efficiency in a low power inductive plasma source
    Collard, T. A.
    Jorns, B. A.
    [J]. PLASMA SOURCES SCIENCE & TECHNOLOGY, 2019, 28 (10)
  • [6] Radiation from high-intensity ultrashort-laser-pulse and gas-jet magnetized plasma interaction
    Dorranian, D
    Starodubtsev, M
    Kawakami, H
    Ito, H
    Yugami, N
    Nishida, Y
    [J]. PHYSICAL REVIEW E, 2003, 68 (02): : 026409/1 - 026409/7
  • [7] Generation of short pulse radiation from magnetized wake in gas-jet plasma and laser interaction
    Dorranian, D
    Ghoranneviss, M
    Starodubtsev, M
    Ito, H
    Yugami, N
    Nishida, Y
    [J]. PHYSICS LETTERS A, 2004, 331 (1-2) : 77 - 83
  • [8] Neutral depletion in a collisionless plasma
    Fruchtman, Amnon
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2008, 36 (02) : 403 - 413
  • [9] Jahn R. G., 2006, PHYS ELECT PROPULSIO
  • [10] Magnetic fluid hyperthermia (MFH):: Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles
    Jordan, A
    Scholz, R
    Wust, P
    Fähling, H
    Felix, R
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1999, 201 : 413 - 419