The use of neural networks for the prediction of wear loss and surface roughness of AA 6351 aluminium alloy

被引:65
|
作者
Durmus, HK [1 ]
Özkaya, E [1 ]
Meriç, C [1 ]
机构
[1] Celal Bayar Univ, Dept Mech Engn, TR-45140 Muradiye Manisa, Turkey
关键词
AA; 6351; artificial neural networks; precipitation hardening;
D O I
10.1016/j.matdes.2004.09.011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Artificial neural networks (ANNs) are a new type of information processing system based on modeling the neural system of human brain. Effects of ageing conditions at various temperatures, load, sliding speed, abrasive grit diameter in 6351 aluminum alloy have been investigated by using artificial neural networks. The experimental results were trained in an ANNs program and the results were compared with experimental values. It is observed that the experimental results coincided with ANNs results. (c) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:156 / 159
页数:4
相关论文
共 50 条
  • [1] USE OF ARTIFICIAL NEURAL NETWORKS IN BALL BURNISHING PROCESS FOR THE PREDICTION OF SURFACE ROUGHNESS OF AA 7075 ALUMINUM ALLOY
    Esme, Ugur
    Sagbas, Aysun
    Kahraman, Funda
    Kulekci, M. Kemal
    MATERIALI IN TEHNOLOGIJE, 2008, 42 (05): : 215 - 219
  • [2] The effect of welding parameters on surface quality of AA6351 aluminium alloy
    Yacob, S.
    MAli, M. A.
    Ahsan, Q.
    Ariffin, N.
    Ali, R.
    Arshad, A.
    Wahab, M. I. A.
    Ismail, S. A.
    Roji, N. S. M.
    Din, W. B. W.
    Zakaria, M. H.
    Abdullah, A.
    Yusof, M. I.
    Kamarulzaman, K. Z.
    Mahyuddin, A.
    Hamzah, M. N.
    Roslan, R.
    3RD INTERNATIONAL CONFERENCE OF MECHANICAL ENGINEERING RESEARCH (ICMER 2015), 2015, 100
  • [3] USE OF NEURAL NETWORKS IN PREDICTION AND SIMULATION OF STEEL SURFACE ROUGHNESS
    Saric, T.
    Simunovic, G.
    Simunovic, K.
    INTERNATIONAL JOURNAL OF SIMULATION MODELLING, 2013, 12 (04) : 225 - 236
  • [4] Effect of Aging on Abrasive Wear of Deformable Aluminum Alloy AA6351
    C. Meriç
    E. Atik
    H. Kaçar
    Metal Science and Heat Treatment, 2004, 46 : 110 - 114
  • [5] Effect of aging on abrasive wear of deformable aluminum alloy AA6351
    Meriç, C
    Atik, E
    Kaça, H
    METAL SCIENCE AND HEAT TREATMENT, 2004, 46 (3-4) : 110 - 114
  • [6] Use of Neural Networks in Tool Wear Prediction
    Kundrik, Juraj
    Kocisko, Marek
    Pollak, Martin
    Teliskova, Monika
    Basistova, Anna
    Fiala, Zdenek
    MODERN TECHNOLOGIES IN MANUFACTURING (MTEM 2019), 2019, 299
  • [7] Artificial neural networks in mechanical surface enhancement technique for the prediction of surface roughness and microhardness of magnesium alloy
    Cagan, S. C.
    Aci, M.
    Buldum, B. B.
    Aci, C.
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2019, 67 (04) : 729 - 739
  • [8] Optimization of Machining Parameters to Improve Surface Quality in the Abrasive Water Jet Cutting of AA6351 Aluminium Alloy
    Alexpandian S.
    Rajesh M.
    Loganathan P.
    Hariram V.
    Kishore Y.R.
    Bhaskar A.
    Krishnakumari A.
    Roy E.
    International Journal of Vehicle Structures and Systems, 2023, 15 (04) : 547 - 551
  • [9] Surface roughness prediction using hybrid neural networks
    Jesuthanam, C. P.
    Kumanan, S.
    Asokan, P.
    MACHINING SCIENCE AND TECHNOLOGY, 2007, 11 (02) : 271 - 286
  • [10] WEAR MECHANISMS OF DIAMOND-LIKE CARBON COATED TOOLS IN TAPPING OF AA6351 T6 ALUMINIUM ALLOY
    Fernandes, Gustavo H. N.
    Lopes, Guilherme H. F.
    Barbosa, Lucas M. Q.
    Martins, Paulo S.
    Machado, Alisson R.
    49TH SME NORTH AMERICAN MANUFACTURING RESEARCH CONFERENCE (NAMRC 49, 2021), 2021, 53 : 293 - 298