Scarcity of Periodic Orbits in Outer Billiards

被引:0
|
作者
Tumanov, Alexander [1 ]
机构
[1] Univ Illinois, Dept Math, 1409 West Green St, Urbana, IL 61801 USA
关键词
Outer billiard; Periodic orbit; Exterior differential system; SUB-RIEMANNIAN GEOMETRY; POINTS; SET;
D O I
10.1007/s12220-017-9927-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a simple proof of the result of Tumanov and Zharnitsky (Int Math Res Not,2006) that the set of period 4 orbits in planar outer billiard with piecewise smooth convex boundary has empty interior, provided that no four corners of the boundary form a parallelogram. We also obtain results on period 5 and 6 orbits.
引用
收藏
页码:2479 / 2490
页数:12
相关论文
共 50 条
  • [41] Degenerate resonances and branching of periodic orbits
    Jacquemard, A.
    Lima, M. Firmino Silva
    Teixeira, M. A.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2008, 187 (01) : 105 - 117
  • [42] Superluminal periodic orbits in the Lorenz system
    Algaba, A.
    Merino, M.
    Rodriguez-Luis, A. J.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 39 : 220 - 232
  • [43] Organization of the periodic orbits in the Rossler flow
    Dong, Chengwei
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2018, 32 (21):
  • [44] 3-PERIODIC ORBIT IMPLYING 6831726876986508 85-PERIODIC ORBITS - INFIMUMS OF NUMBERS OF PERIODIC-ORBITS IN CONTINUOUS-FUNCTIONS
    MAI, JH
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY & TECHNOLOGICAL SCIENCES, 1991, 34 (10): : 1194 - 1204
  • [45] Bifurcation of periodic orbits of periodic equations with multiple parameters by averaging method
    Sheng, Lijuan
    Wang, Shanshan
    Li, Xueli
    Han, Maoan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 490 (02)
  • [46] TRANSVERSAL PERIODIC-TO-PERIODIC HOMOCLINIC ORBITS IN SINGULARLY PERTURBED SYSTEMS
    Battelli, Flaviano
    Palmer, Ken
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2010, 14 (02): : 367 - 387
  • [47] On the stability of periodic orbits for differential systems in Rn
    Gasull, Armengol
    Giacomini, Hector
    Grau, Maite
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2008, 10 (2-3): : 495 - 509
  • [48] Geometrically Integrable Maps in the Plane and Their Periodic Orbits
    Efremova, L. S.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (10) : 2315 - 2324
  • [49] Data-Driven Stabilization of Periodic Orbits
    Bramburger, Jason J.
    Kutz, J. Nathan
    Brunton, Steven L.
    IEEE ACCESS, 2021, 9 : 43504 - 43521
  • [50] Periodic orbits and trace formula - Integrable systems
    Song, JJ
    Li, XG
    Liu, F
    Li, SW
    HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS-CHINESE EDITION, 2001, 25 (09): : 872 - 876