Scarcity of Periodic Orbits in Outer Billiards

被引:0
|
作者
Tumanov, Alexander [1 ]
机构
[1] Univ Illinois, Dept Math, 1409 West Green St, Urbana, IL 61801 USA
关键词
Outer billiard; Periodic orbit; Exterior differential system; SUB-RIEMANNIAN GEOMETRY; POINTS; SET;
D O I
10.1007/s12220-017-9927-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a simple proof of the result of Tumanov and Zharnitsky (Int Math Res Not,2006) that the set of period 4 orbits in planar outer billiard with piecewise smooth convex boundary has empty interior, provided that no four corners of the boundary form a parallelogram. We also obtain results on period 5 and 6 orbits.
引用
收藏
页码:2479 / 2490
页数:12
相关论文
共 50 条
  • [31] PERIODIC ORBITS WITH PRESCRIBED ABBREVIATED ACTION
    Paternain, Miguel
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (09) : 4001 - 4008
  • [32] CONTRACTIBLE PERIODIC ORBITS OF LAGRANGIAN SYSTEMS
    Paternain, Miguel
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2019, 99 (03) : 445 - 453
  • [33] The growth of periodic orbits with large support
    Hou, Xiaobo
    Tian, Xueting
    Yuan, Yi
    NONLINEARITY, 2023, 36 (06) : 2975 - 3012
  • [34] Expanding periodic orbits with small exponents
    Chung, YM
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2003, 9 (3-4) : 337 - 341
  • [35] Renormalization and Periodic Orbits¶for Hamiltonian Flows
    Juan J. Abad
    Hans Koch
    Communications in Mathematical Physics, 2000, 212 : 371 - 394
  • [36] A study of periodic orbits near Europa
    Bury, Luke
    McMahon, Jay
    Lo, Martin
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2022, 134 (03):
  • [37] Periodic orbits in glycolytic oscillators: From elliptic orbits to relaxation oscillations
    T. Roy
    J. K. Bhattacharjee
    A. K. Mallik
    The European Physical Journal E, 2011, 34
  • [38] Periodic orbits for a class of galactic potentials
    Alfaro, Felipe
    Llibre, Jaume
    Perez-Chavela, Ernesto
    ASTROPHYSICS AND SPACE SCIENCE, 2013, 344 (01) : 39 - 44
  • [39] Degenerate resonances and branching of periodic orbits
    A. Jacquemard
    M. Firmino Silva Lima
    M. A. Teixeira
    Annali di Matematica Pura ed Applicata, 2008, 187 : 105 - 117
  • [40] PERIODIC ORBITS IN HYPERCHAOTIC CHEN SYSTEMS
    Maza, Susanna
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,