Influence of the Alkyl Chain Length of (Pentafluorophenylalkyl) Ammonium Salts on Inverted Perovskite Solar Cell Performance

被引:12
作者
Li, Hui [1 ]
Chu, Ronan [1 ]
Zhang, Guanran [1 ]
Burn, Paul L. [1 ]
Gentle, Ian R. [1 ]
Shaw, Paul E. [1 ]
机构
[1] Univ Queensland, Ctr Organ Photon & Elect, Sch Chem & Mol Biosci, St Lucia, Qld 4072, Australia
关键词
perovskite solar cell; processing additives; methylammonium lead triiodide; 2,3,4,5,6-pentafluorophenyl ammonium additives; defect passivation; OPEN-CIRCUIT VOLTAGE; EFFICIENCY; STABILITY; RECOMBINATION; PASSIVATION; GUANIDINIUM;
D O I
10.1021/acsami.2c08733
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We study the effect of (2,3,4,5,6-pentafluorophenyl)-alkylamine additives with differing alkyl chain lengths (methyl, ethyl, and n-propyl) on the performance of methylammonium lead triiodide (MAPbI(3)) perovskite solar cells. The results show that the length of the alkyl chain between the 2,3,4,5,6-pentafluorophenyl group and ammonium moiety has a critical effect on the perovskite film structure and subsequent device performance. The 2,3,4,5,6-pentafluorophenyl ammonium additive with the shortest linking group (a methylene unit), namely (2,3,4,5,6-pentafluorophenyl)methylammonium iodide, was found to be distributed throughout the bulk of the perovskite film with a 2D phase only being observable at high concentrations (>30 mol %). In contrast, the additives with ethyl and n-propyl linking groups phase-separate during solution processing and are found to concentrate at the surface of the perovskite film. Photoluminescence measurements showed that the fluorinated additives passivated the surface defects on the perovskite grains. Of the three additives, inverted devices containing 0.32 mol% of the 2,3,4,5,6-pentafluorophenyl ammonium additive with the methylene linking group achieved a maximum power conversion efficiency of 22.0%, with the device efficiency decreasing with increasing additive concentration. In contrast, the devices composed of the additive with the longest alkyl linker, 3-(2,3,4,5,6-pentafluorophenyl)propylammonium iodide, had the poorest performance, with PCEs less than that of the neat MAPbI(3) control and decreasing with increasing additive concentration.
引用
收藏
页码:39939 / 39950
页数:12
相关论文
共 56 条
[1]   Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cells [J].
Alharbi, Essa A. ;
Alyamani, Ahmed Y. ;
Kubicki, Dominik J. ;
Uhl, Alexander R. ;
Walder, Brennan J. ;
Alanazi, Anwar Q. ;
Luo, Jingshan ;
Burgos-Caminal, Andres ;
Albadri, Abdulrahman ;
Albrithen, Hamad ;
Alotaibi, Mohammad Hayal ;
Moser, Jacques-E ;
Zakeeruddin, Shaik M. ;
Giordano, Fabrizio ;
Emsley, Lyndon ;
Gratzel, Michael .
NATURE COMMUNICATIONS, 2019, 10 (1)
[2]   Low-Temperature Crystallization Enables 21.9% Efficient Single-Crystal MAPbI3 Inverted Perovskite Solar Cells [J].
Alsalloum, Abdullah Y. ;
Turedi, Bekir ;
Zheng, Xiaopeng ;
Mitra, Somak ;
Zhumekenov, Ayan A. ;
Lee, Kwang Jae ;
Maity, Partha ;
Gereige, Issam ;
AlSaggaf, Ahmed ;
Rogan, Iman S. ;
Mohammed, Omar F. ;
Bakr, Osman M. .
ACS ENERGY LETTERS, 2020, 5 (02) :657-+
[3]   High-Performance Perovskite Solar Cells with Enhanced Environmental Stability Based on Amphiphile-Modified CH3NH3PbI3 [J].
Bi, Dongqin ;
Gao, Peng ;
Scopelliti, Rosario ;
Oveisi, Emad ;
Luo, Jingshan ;
Graetzel, Michael ;
Hagfeldt, Anders ;
Nazeeruddin, Mohammad Khaja .
ADVANCED MATERIALS, 2016, 28 (15) :2910-2915
[4]   2D Ruddlesden-Popper Perovskites for Optoelectronics [J].
Chen, Yani ;
Sun, Yong ;
Peng, Jiajun ;
Tang, Junhui ;
Zheng, Kaibo ;
Liang, Ziqi .
ADVANCED MATERIALS, 2018, 30 (02)
[5]   Mixed 3D-2D Passivation Treatment for Mixed-Cation Lead Mixed-Halide Perovskite Solar Cells for Higher Efficiency and Better Stability [J].
Cho, Yongyoon ;
Soufiani, Arman Mahboubi ;
Yun, Jae Sung ;
Kim, Jincheol ;
Lee, Da Seul ;
Seidel, Jan ;
Deng, Xiaofan ;
Green, Martin A. ;
Huang, Shujuan ;
Ho-Baillie, Anita W. Y. .
ADVANCED ENERGY MATERIALS, 2018, 8 (20)
[6]   3D/2D Bilayerd Perovskite Solar Cells with an Enhanced Stability and Performance [J].
Choi, Hyeon-Seo ;
Kim, Hui-Seon .
MATERIALS, 2020, 13 (17)
[7]   Identifying and suppressing interfacial recombination to achieve high open-circuit voltage in perovskite solar cells [J].
Correa-Baena, Juan-Pablo ;
Tress, Wolfgang ;
Domanski, Konrad ;
Anaraki, Elham Halvani ;
Turren-Cruz, Silver-Hamill ;
Roose, Bart ;
Boix, Pablo P. ;
Gratzel, Michael ;
Saliba, Michael ;
Abate, Antonio ;
Hagfeldt, Anders .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (05) :1207-1212
[8]   Guanidinium: A Route to Enhanced Carrier Lifetime and Open-Circuit Voltage in Hybrid Perovskite Solar Cells [J].
De Marco, Nicholas ;
Zhou, Huanping ;
Chen, Qi ;
Sun, Pengyu ;
Liu, Zonghao ;
Meng, Lei ;
Yao, En-Ping ;
Liu, Yongsheng ;
Schiffer, Andy ;
Yang, Yang .
NANO LETTERS, 2016, 16 (02) :1009-1016
[9]   Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells [J].
Deng, Dan ;
Zhang, Yajie ;
Zhang, Jianqi ;
Wang, Zaiyu ;
Zhu, Lingyun ;
Fang, Jin ;
Xia, Benzheng ;
Wang, Zhen ;
Lu, Kun ;
Ma, Wei ;
Wei, Zhixiang .
NATURE COMMUNICATIONS, 2016, 7
[10]   Correlating alkyl chain length with defect passivation efficacy in perovskite solar cells [J].
Feng, Wenhuai ;
Zhang, Chengxi ;
Zhong, Jun-Xing ;
Ding, Liming ;
Wu, Wu-Qiang .
CHEMICAL COMMUNICATIONS, 2020, 56 (37) :5006-5009