A Sliced Inverse Regression Approach for a Stratified Population

被引:2
作者
Chavent, Marie [2 ]
Kuentz, Vanessa [3 ]
Liquet, Benoit [4 ]
Saracco, Jerome [1 ,2 ,5 ]
机构
[1] Univ Bordeaux 2, Univ Bordeaux 1, CNRS, Inst Math Bordeaux,UMR 5251, F-33405 Talence, France
[2] INRIA Bordeaux Sud Ouest, CQFD Team, Cestas, France
[3] Irstea, UR ADBX, Cestas, France
[4] Univ Bordeaux 2, INSERM, ISPED, U897, F-33076 Bordeaux, France
[5] Univ Montesquieu Bordeaux IV, GREThA, Pessac, France
关键词
Categorical covariate; Dimension reduction; Eigen decomposition; Sliced Inverse Regression (SIR); SUFFICIENT DIMENSION REDUCTION; ASYMPTOTIC THEORY; SIR-ALPHA; DIRECTION; MODELS; LINK;
D O I
10.1080/03610926.2010.501940
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we consider a semiparametric single index regression model involving a real dependent variable Y, a p-dimensional quantitative covariable X, and a categorical predictor Z which defines a stratification of the population. This model includes a dimension reduction of X via an index X'beta. We propose an approach based on sliced inverse regression in order to estimate the space spanned by the common dimension reduction direction beta. We establish root n-consistency of the proposed estimator and its asymptotic normality. Simulation study shows good numerical performance of the proposed estimator in homoscedastic and heteroscedastic cases. Extensions to multiple indices models, q-dimensional response variable, and/or SIR alpha-based methods are also discussed. The case of unbalanced subpopulations is treated. Finally, a practical method to investigate if there is or not a common direction beta is proposed.
引用
收藏
页码:3857 / 3878
页数:22
相关论文
共 50 条
  • [41] Robust functional sliced inverse regression
    Guochang Wang
    Jianjun Zhou
    Wuqing Wu
    Min Chen
    Statistical Papers, 2017, 58 : 227 - 245
  • [42] On spline approximation of sliced inverse regression
    Zhu, Li-ping
    Yu, Zhou
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (09): : 1289 - 1302
  • [43] A new sliced inverse regression method for multivariate response
    Coudret, R.
    Girard, S.
    Saracco, J.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 77 : 285 - 299
  • [44] SLICED INVERSE REGRESSION IN METRIC SPACES
    Virta, Joni
    Lee, Kuang-Yao
    Li, Lexin
    STATISTICA SINICA, 2022, 32 : 2315 - 2337
  • [45] Multiple phenotype association tests based on sliced inverse regression
    Wenyuan Sun
    Kyongson Jon
    Wensheng Zhu
    BMC Bioinformatics, 25
  • [46] Multiple phenotype association tests based on sliced inverse regression
    Sun, Wenyuan
    Jon, Kyongson
    Zhu, Wensheng
    BMC BIOINFORMATICS, 2024, 25 (01)
  • [47] SPARSE SLICED INVERSE REGRESSION VIA CHOLESKY MATRIX PENALIZATION
    Nghiem, Linh H.
    Hui, Francis K. C.
    Muller, Samuel
    Welsh, A. H.
    STATISTICA SINICA, 2022, 32 : 2431 - 2453
  • [48] Sliced inverse regression in reference curves estimation
    Gannoun, A
    Girard, S
    Guinot, C
    Saracco, J
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2004, 46 (01) : 103 - 122
  • [49] Tobit model estimation and sliced inverse regression
    Li, Lexin
    Simonoff, Jeffrey S.
    Tsai, Chih-Ling
    STATISTICAL MODELLING, 2007, 7 (02) : 107 - 123
  • [50] Asymptotics for kernel estimate of sliced inverse regression
    Zhu, LX
    Fang, KT
    ANNALS OF STATISTICS, 1996, 24 (03) : 1053 - 1068