A Sliced Inverse Regression Approach for a Stratified Population

被引:2
作者
Chavent, Marie [2 ]
Kuentz, Vanessa [3 ]
Liquet, Benoit [4 ]
Saracco, Jerome [1 ,2 ,5 ]
机构
[1] Univ Bordeaux 2, Univ Bordeaux 1, CNRS, Inst Math Bordeaux,UMR 5251, F-33405 Talence, France
[2] INRIA Bordeaux Sud Ouest, CQFD Team, Cestas, France
[3] Irstea, UR ADBX, Cestas, France
[4] Univ Bordeaux 2, INSERM, ISPED, U897, F-33076 Bordeaux, France
[5] Univ Montesquieu Bordeaux IV, GREThA, Pessac, France
关键词
Categorical covariate; Dimension reduction; Eigen decomposition; Sliced Inverse Regression (SIR); SUFFICIENT DIMENSION REDUCTION; ASYMPTOTIC THEORY; SIR-ALPHA; DIRECTION; MODELS; LINK;
D O I
10.1080/03610926.2010.501940
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we consider a semiparametric single index regression model involving a real dependent variable Y, a p-dimensional quantitative covariable X, and a categorical predictor Z which defines a stratification of the population. This model includes a dimension reduction of X via an index X'beta. We propose an approach based on sliced inverse regression in order to estimate the space spanned by the common dimension reduction direction beta. We establish root n-consistency of the proposed estimator and its asymptotic normality. Simulation study shows good numerical performance of the proposed estimator in homoscedastic and heteroscedastic cases. Extensions to multiple indices models, q-dimensional response variable, and/or SIR alpha-based methods are also discussed. The case of unbalanced subpopulations is treated. Finally, a practical method to investigate if there is or not a common direction beta is proposed.
引用
收藏
页码:3857 / 3878
页数:22
相关论文
共 50 条
  • [1] Advanced topics in Sliced Inverse Regression
    Girard, Stephane
    Lorenzo, Hadrien
    Saracco, Jerome
    JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 188
  • [2] Random sliced inverse regression
    Hilafu, Haileab
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (05) : 3516 - 3526
  • [3] BIG-SIR a Sliced Inverse Regression approach for massive data
    Liquet, Benoit
    Saracco, Jerome
    STATISTICS AND ITS INTERFACE, 2016, 9 (04) : 509 - 520
  • [4] Sliced inverse regression for multivariate response regression
    Lue, Heng-Hui
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (08) : 2656 - 2664
  • [5] An asymptotic theory for Sliced Inverse Regression
    Saracco, J
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1997, 26 (09) : 2141 - 2171
  • [6] Robust functional sliced inverse regression
    Wang, Guochang
    Zhou, Jianjun
    Wu, Wuqing
    Chen, Min
    STATISTICAL PAPERS, 2017, 58 (01) : 227 - 245
  • [7] Gaussian Regularized Sliced Inverse Regression
    Bernard-Michel, Caroline
    Gardes, Laurent
    Girard, Stephane
    STATISTICS AND COMPUTING, 2009, 19 (01) : 85 - 98
  • [8] On sliced inverse regression with missing values
    Dong, Yuexiao
    Li, Zeda
    JOURNAL OF NONPARAMETRIC STATISTICS, 2018, 30 (04) : 990 - 1002
  • [9] Iterative projection of sliced inverse regression with fused approach
    Han, Hyoseon
    Cho, Youyoung
    Yoo, Jae Keun
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2021, 28 (02) : 205 - 215
  • [10] Sliced inverse median difference regression
    Babos, Stephen
    Artemiou, Andreas
    STATISTICAL METHODS AND APPLICATIONS, 2020, 29 (04) : 937 - 954