On the Maximum of Generalized Stirling Numbers

被引:0
作者
Corcino, Roberto B. [1 ]
Corcino, Cristina B. [2 ]
机构
[1] Mindanao State Univ, Dept Math, Marawi City 9700, Philippines
[2] De La Salle Univ, Dept Math, Manila 1004, Philippines
关键词
Stirling numbers; generalized Stirling numbers; unimodality; log-concavity; normality; DOWLING LATTICES; WHITNEY NUMBERS; 1ST KIND; FORMULA;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The value of the index for which the sequence of generalized Stirling numbers of the first and second kinds assume their maximum values, is determined.
引用
收藏
页码:241 / 256
页数:16
相关论文
共 50 条
  • [31] Stirling numbers for complex arguments
    Richmond, B
    Merlini, D
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1997, 10 (01) : 73 - 82
  • [32] Search trees and Stirling numbers
    Manob, AH
    Islam, TM
    Parvez, MT
    Kaykobad, M
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 48 (5-6) : 747 - 754
  • [33] Stirling numbers and periodic points
    Miska, Piotr
    Ward, Tom
    ACTA ARITHMETICA, 2021, 201 (04) : 421 - +
  • [34] The Jacobi-Stirling numbers
    Andrews, George E.
    Egge, Eric S.
    Gawronski, Wolfgang
    Littlejohn, Lance L.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (01) : 288 - 303
  • [35] Stirling numbers and periodic points
    Miska, Piotr
    Ward, T. O. M.
    ACTA ARITHMETICA, 2021,
  • [36] Pascal matrices and stirling numbers
    Maltais, P
    Gulliver, TA
    APPLIED MATHEMATICS LETTERS, 1998, 11 (02) : 7 - 11
  • [37] Value Sharing and Stirling Numbers
    Hinkkanen, Aimo
    Laine, Ilpo
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2024, 24 (03) : 631 - 660
  • [38] Vector weighted Stirling numbers and an application in graph theory
    Esmaeeli, Fahimeh
    Erfanian, Ahmad
    Mirzavaziri, Madjid
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2021, 9 (01) : 223 - 234
  • [39] Asymptotics of the Chebyshev-Stirling numbers of the first kind
    Merca, Mircea
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2016, 27 (04) : 259 - 267
  • [40] On the Location of the Maximum Stirling Number(s) of the Second Kind
    Horst Wegner
    Results in Mathematics, 2009, 54 : 183 - 198