Vertex covers and secure domination in graphs

被引:31
作者
Burger, Alewyn P. [1 ]
Henning, Michael A. [2 ]
van Vuuren, Jan H. [1 ]
机构
[1] Univ Stellenbosch, Dept Logist, ZA-7602 Stellenbosch, Matieland, South Africa
[2] Univ KwaZulu Natal, Sch Math Sci, ZA-3209 Pietermaritzburg, South Africa
基金
新加坡国家研究基金会;
关键词
vertex covers; secure domination;
D O I
10.2989/QM.2008.31.2.5.477
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V, E) be a graph and let S subset of V. The set S is a dominating set of G if every vertex in V \ S is adjacent to some vertex in S. The set S is a secure dominating set of G if for each u is an element of V \ S, there exists a vertex v is an element of S such that uv is an element of E and (S \ {v}) boolean OR {u} is a dominating set of G. The minimum cardinality of a secure dominating set in G is the secure domination number gamma(s)(G) of G. We show that if G is a connected graph of order n with minimum degree at least two that is not a 5-cycle, then gamma(s)(G) <= n/2 and this bound is sharp. Our proof uses a covering of a subset of V (G) by vertex-disjoint copies of subgraphs each of which is isomorphic to K-2 or to an odd cycle.
引用
收藏
页码:163 / 171
页数:9
相关论文
共 8 条
[1]  
Burger A. P., 2004, Journal of Combinatorial Mathematics and Combinatorial Computing, V49, P159
[2]  
Burger A. P., 2004, Journal of Combinatorial Mathematics and Combinatorial Computing, V50, P179
[3]   Irredundance, secure domination and maximum degree in trees [J].
Cockayne, E. J. .
DISCRETE MATHEMATICS, 2007, 307 (01) :12-17
[4]  
Cockayne E. J., 2003, Bull. Inst. Combin. Appl., V39, P87
[5]  
Cockayne EJ, 2005, UTILITAS MATHEMATICA, V67, P19
[6]  
Haynes T. W., 1998, FUNDAMENTALS DOMINAT
[7]  
Haynes T.W., 1998, FUNDAMENTALS DOMINAT
[8]  
Mynhardt CM, 2005, UTILITAS MATHEMATICA, V67, P255