finite element methods;
a posteriori error estimates;
least-squares method;
ADAPTIVE-CONTROL;
D O I:
10.1137/110822682
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We propose a goal-oriented, local a posteriori error estimator for H(div) least-squares (LS) finite element methods. Our main interest is to develop an a posteriori error estimator for the flux approximation in a preassigned region of interest D subset of Omega. The estimator is obtained from the LS functional by scaling residuals with proper weight coefficients. The weight coefficients are given in terms of local mesh size h(T) and a function omega(D) depending on the distance to D. This new error estimator measures the pollution effect from the outside region of D and provides a basis for local refinement in order to efficiently approximate the solution in D. Numerical experiments show superior performances of our goal-oriented a posteriori estimators over the standard LS functional and global error estimators.
机构:
Purdue Univ, Dept Math, W Lafayette, IN 47907 USAPurdue Univ, Dept Math, W Lafayette, IN 47907 USA
Cai, Zhiqiang
Carey, Varis
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USAPurdue Univ, Dept Math, W Lafayette, IN 47907 USA
Carey, Varis
Ku, JaEun
论文数: 0引用数: 0
h-index: 0
机构:
Oklahoma State Univ, Dept Math, Stillwater, OK 74078 USAPurdue Univ, Dept Math, W Lafayette, IN 47907 USA
Ku, JaEun
Park, Eun-Jae
论文数: 0引用数: 0
h-index: 0
机构:
Yonsei Univ, Dept Math, Seoul 120749, South Korea
Yonsei Univ, Dept Computat Sci & Engn, Seoul 120749, South KoreaPurdue Univ, Dept Math, W Lafayette, IN 47907 USA