Positive Radial Solutions for a Class of Singular p-Laplacian Systems in a Ball

被引:0
作者
Hai, D. D. [1 ]
Williams, J. L. [1 ]
机构
[1] Mississippi State Univ, Dept Math & Stat, Mississippi State, MS 39762 USA
关键词
p-Laplacian; systems; singular; positive radial solutions; asymptotically p-linear; LINEAR ELLIPTIC-SYSTEMS;
D O I
10.1007/s00009-014-0436-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence and nonexistence of positive radial solutions for the system {-Delta(p)u(1) = h(1) (u(2)) + mu(1)f(1)(u(2)) in B, -Delta(p)u(2) = h(2) (u(1)) + mu(2)f(2)(u(1)) in B u(1) = u(2) = 0 on partial derivative B, where p > 1, Delta(p)u = div(vertical bar del(u)vertical bar(-2)del(u)) is the open unit ball in with f (i) asymptotically p-linear at a, and mu (i) are positive constants, i = 1, 2.
引用
收藏
页码:791 / 801
页数:11
相关论文
共 50 条
[41]   Nonexistence of positive solutions for a class of p-Laplacian boundary value problems [J].
Hai, D. D. .
APPLIED MATHEMATICS LETTERS, 2014, 31 :12-15
[42]   EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR FOUR-POINT BOUNDARY VALUE PROBLEM WITH A p-LAPLACIAN [J].
Miao, Chunmei ;
Zhao, Junfang ;
Ge, Weigao .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2009, 59 (04) :957-973
[43]   Multiplicity of positive radial solutions of p-Laplacian problems with nonlinear gradient term [J].
Pei, Minghe ;
Wang, Libo ;
Lv, Xuezhe .
BOUNDARY VALUE PROBLEMS, 2017,
[44]   Existence of periodic solutions for a class of p-Laplacian equations [J].
Chang, Xiaojun ;
Qiao, Yu .
BOUNDARY VALUE PROBLEMS, 2013,
[45]   On a class of singular p-Laplacian boundary value problems [J].
Hai, D. D. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 383 (02) :619-626
[46]   Periodic Solutions to Parabolic Equation with Singular p-Laplacian [J].
Alaoui, Abdelilah Lamrani ;
El Hachimi, Abderrahmane .
ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2011, 36 (08) :1535-1548
[47]   Nontrivial solutions for p-Laplacian systems [J].
Hai, D. D. ;
Wang, Haiyan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 330 (01) :186-194
[48]   NONEXISTENCE OF POSITIVE SOLUTIONS FOR A SYSTEMS OF COUPLED FRACTIONAL BVPS WITH p-LAPLACIAN [J].
Rao, S. N. ;
Meetei, M. Z. .
TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (03) :597-608
[49]   Exact structure of positive solutions for a p-Laplacian problem involving singular and superlinear nonlinearities [J].
Wang, Shin-Hwa ;
Yeh, Tzung-Shin .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2007, 37 (02) :689-708
[50]   Multiple periodic solutions of a class of p-Laplacian [J].
Yang, XJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 314 (01) :17-29