Python']Python framework for hp-adaptive discontinuous Galerkin methods for two-phase flow in porous media

被引:9
作者
Dedner, Andreas [1 ]
Kane, Birane [2 ]
Klofkorn, Robert [3 ]
Nolte, Martin [4 ]
机构
[1] Univ Warwick, Math Inst, Zeeman Bldg, Coventry CV4 7AL, W Midlands, England
[2] Univ Stuttgart, Inst Appl Anal & Numer Simulat, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
[3] Int Res Inst Stavanger, POB 8046, N-4068 Stavanger, Norway
[4] Albert Ludwigs Univ Freiburg, Dept Appl Math, Hermann Herder Str 10, D-79104 Freiburg, Germany
关键词
Discontinuous Galerkin; hp-adaptivity; Porous media two-phase flow; IMPES; Dune; !text type='Python']Python[!/text; POSTERIORI ERROR ESTIMATION; LINEARIZATION SCHEME; DISCRETIZATIONS; PARALLEL;
D O I
10.1016/j.apm.2018.10.013
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we present a framework for solving two-phase flow problems in porous media. The discretization is based on a Discontinuous Galerkin method and includes local grid adaptivity and local choice of polynomial degree. The method is implemented using the new Python frontend Dune-FemPy to the open source framework Dune. The code used for the simulations is made available as Jupyter notebook and can be used through a Docker container. We present a number of time stepping approaches ranging from a classical IMPES method to a fully coupled implicit scheme. The implementation of the discretization is very flexible allowing to test different formulations of the two-phase flow model and adaptation strategies. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:179 / 200
页数:22
相关论文
共 50 条
[41]   Existence and convergence of a discontinuous Galerkin method for the incompressible three-phase flow problem in porous media [J].
Jones, Giselle Sosa ;
Cappanera, Loic ;
Riviere, Beatrice .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (05) :2714-2747
[42]   Modified Picard with multigrid method for two-phase flow problems in rigid porous media [J].
de Oliveira, Michely Lais ;
Pinto, Marcio Augusto Villela ;
Rodrigo, Carmen ;
Gaspar, Francisco Jose .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2024, 125 (05)
[43]   Upwinding and artificial viscosity for robust discontinuous Galerkin schemes of two-phase flow in mass conservation form [J].
Jayasinghe, Savithru ;
Darmofal, David L. ;
Allmaras, Steven R. ;
Dow, Eric ;
Galbraith, Marshall C. .
COMPUTATIONAL GEOSCIENCES, 2021, 25 (01) :191-214
[44]   Upwinding and artificial viscosity for robust discontinuous Galerkin schemes of two-phase flow in mass conservation form [J].
Savithru Jayasinghe ;
David L. Darmofal ;
Steven R. Allmaras ;
Eric Dow ;
Marshall C. Galbraith .
Computational Geosciences, 2021, 25 :191-214
[45]   NUMERICAL SIMULATION OF OIL-WATER TWO-PHASE FLOW IN POROUS MEDIA [J].
Pinilla Velandia, Johana Lizeth .
FUENTES EL REVENTION ENERGETICO, 2013, 11 (02) :99-109
[46]   An implicit numerical model for multicomponent compressible two-phase flow in porous media [J].
Zidane, Ali ;
Firoozabadi, Abbas .
ADVANCES IN WATER RESOURCES, 2015, 85 :64-78
[47]   Implicit finite volume and discontinuous Galerkin methods for multicomponent flow in unstructured 3D fractured porous media [J].
Moortgat, Joachim ;
Amooie, Mohammad Amin ;
Soltanian, Mohamad Reza .
ADVANCES IN WATER RESOURCES, 2016, 96 :389-404
[48]   Convergence of an MPFA finite volume scheme for a two-phase porous media flow model with dynamic capillarity [J].
Cao, X. ;
Nemadjieu, S. F. ;
Pop, I. S. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2019, 39 (01) :512-544
[49]   Streamline method for resolving sharp fronts for complex two-phase flow in porous media [J].
Vidotto, Ettore ;
Helmig, Rainer ;
Schneider, Martin ;
Wohlmuth, Barbara .
COMPUTATIONAL GEOSCIENCES, 2018, 22 (06) :1487-1502
[50]   Existence of weak solutions for nonisothermal immiscible compressible two-phase flow in porous media [J].
Amaziane, B. ;
Jurak, M. ;
Pankratov, L. ;
Piatnitski, A. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2025, 85