Prediction of metabolic syndrome: A machine learning approach to help primary prevention

被引:12
作者
Tavares, Leonardo Daniel [1 ]
Manoel, Andre [1 ]
Donato, Thiago Henrique Rizzi [1 ]
Cesena, Fernando [1 ]
Minanni, Carlos Andrr [1 ]
Kashiwagi, Nea Miwa [1 ]
da Silva, Livia Paiva [1 ]
Amaro Jr, Edson [1 ]
Szlejf, Claudia [1 ,2 ]
机构
[1] Hosp Israelita Albert Einstein, Sao Paulo, Brazil
[2] Ave Albert Einstein, 627 4 ,Andar Bloco D, BR-05652900 Sao Paulo, SP, Brazil
关键词
Artificial intelligence; Machine learning; Metabolic syndrome; Primary prevention; Risk prediction; CARDIOVASCULAR RISK; PREVALENCE; STATISTICS;
D O I
10.1016/j.diabres.2022.110047
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims: To describe the performance of machine learning (ML) applied to predict future metabolic syndrome (MS), and to estimate lifestyle changes effects in MS predictions.Methods: We analyzed data from 17,182 adults attending a checkup program sequentially (37,999 visit pairs) over 17 years. Variables on sociodemographic attributes, clinical, laboratory, and lifestyle characteristics were used to develop ML models to predict MS [logistic regression, linear discriminant analysis, k-nearest neighbors, decision trees, Light Gradient Boosting Machine (LGBM), Extreme Gradient Boosting]. We have tested the effects of changes in lifestyle in MS prediction at individual levels.Results: All models showed adequate calibration and good discrimination, but the LGBM showed better perfor-mance (Sensitivity = 87.8 %, Specificity = 70.2 %, AUC-ROC = 0.86). Causal inference analysis showed that increasing physical activity level and reducing BMI by at least 2 % had an effect of reducing the predicted probability of MS by 3.8 % (95 % CI =-4.8 %;-2.7 %).Conclusion: ML models based on data from a checkup program showed good performance to predict MS and allowed testing for effects of lifestyle changes in this prediction. External validation is recommended to verify models' ability to identify at-risk individuals, and potentially increase their engagement in preventive measures.
引用
收藏
页数:7
相关论文
共 51 条
[1]   Harmonizing the Metabolic Syndrome A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity [J].
Alberti, K. G. M. M. ;
Eckel, Robert H. ;
Grundy, Scott M. ;
Zimmet, Paul Z. ;
Cleeman, James I. ;
Donato, Karen A. ;
Fruchart, Jean-Charles ;
James, W. Philip T. ;
Loria, Catherine M. ;
Smith, Sidney C., Jr. .
CIRCULATION, 2009, 120 (16) :1640-1645
[2]  
Associacao Brasileira para o Estudo da Obesidade e Sindrome Metabolica, 2016, DIR BRAS OB 2016, V4th
[3]  
Babic Frantisek, 2014, Information Technology in Bio- and Medical Informatics. 5th International Conference (ITBAM 2014). Proceedings: LNCS 8649, P118, DOI 10.1007/978-3-319-10265-8_11
[4]  
Behadada O, 2017, GREEN PERVASIVE CLOU, DOI [10.1007/978-3-319-57-186-7_45, DOI 10.1007/978-3-319-57-186-7_45]
[5]  
Brier GW., 1950, Mon. Weather Rev, V78, P1, DOI [10.1175/1520-0493(1950)078andlt
[6]  
0001:VOFEITandgt
[7]  
2.0.CO
[8]  
2, 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO
[9]  
2]
[10]  
Velásquez SC, 2017, ENDOCRINOL DIAB NUTR, V64, P82, DOI [10.1016/j.endien.2016.09.004, 10.1016/j.endinu.2016.09.002]