A comparative analysis of the uncertainty of astigmatism-μPTV, stereo-μPIV, and μPIV

被引:30
作者
Cierpka, C. [1 ]
Rossi, M. [1 ]
Segura, R. [1 ]
Mastrangelo, F. [2 ]
Kaehler, C. J. [1 ]
机构
[1] Univ Bundeswehr Munchen, Inst Fluid Mech & Aerodynam, D-85577 Neubiberg, Germany
[2] Politecn Torino, Dept Mech, I-10129 Turin, Italy
关键词
PARTICLE IMAGE VELOCIMETRY; MICRO-PIV; RESOLUTION; POSITION; TRACKING; FLOWS;
D O I
10.1007/s00348-011-1075-5
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Astigmatism or wavefront deformation, microscopic particle tracking velocimetry (A-mu PTV) (Chen et al. in Exp Fluids 47:849-863, 2009; Cierpka et al. in Meas Sci Technol 21:045401, 2010b) is a method to determine the complete 3D3C velocity field in micro-fluidic devices with a single camera. By using an intrinsic calibration procedure that enables a robust and precise calibration on the basis of the measured data itself (Cierpka et al. in Meas Sci Technol 22:015401, doi:10.1088/0957-0233/22/1/015401"10.1088/0957-0233/22/1/015401, 2011), accurate results without errors due to spatial averaging or bias due to the depth of correlation can be obtained. This method takes all image aberrations into account, allows for the use of the whole CCD sensor, and is easy to apply without expert knowledge. In this paper, a comparative study is presented to assess the uncertainties of two state-of-the-art methods for 3C3D velocity field measurements in microscopic flows: stereoscopic micro-particle image velocimetry (S-mu PIV) and astigmatism micro-particle tracking velocimetry (A-mu PTV). First, the main parameters affecting all methods' measurement uncertainty are identified, described, and quantified. Second, the test case of the flow over a backward-facing step is analyzed using all methods. For comparison, standard 2D2C mu PIV measurements and numerical flow simulations are shown as well. Advantages and disadvantages of both methods are discussed.
引用
收藏
页码:605 / 615
页数:11
相关论文
共 31 条
[1]   Wavefront sensing for single view three-component three-dimensional flow velocimetry [J].
Angarita-Jaimes, N. ;
McGhee, E. ;
Chennaoui, M. ;
Campbell, H. I. ;
Zhang, S. ;
Towers, C. E. ;
Greenaway, A. H. ;
Towers, D. P. .
EXPERIMENTS IN FLUIDS, 2006, 41 (06) :881-891
[2]  
[Anonymous], 2006, S FLOW VIS
[3]   Three-dimensional, three-component velocity measurements using stereoscopic micro-PIV and PTV [J].
Bown, M. R. ;
MacInnes, J. M. ;
Allen, R. W. K. ;
Zimmerman, W. B. J. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2006, 17 (08) :2175-2185
[4]   Wavefront sensing for three-component three-dimensional flow velocimetry in microfluidics [J].
Chen, S. ;
Angarita-Jaimes, N. ;
Angarita-Jaimes, D. ;
Pelc, B. ;
Greenaway, A. H. ;
Towers, C. E. ;
Lin, D. ;
Towers, D. P. .
EXPERIMENTS IN FLUIDS, 2009, 47 (4-5) :849-863
[5]   On the calibration of astigmatism particle tracking velocimetry for microflows [J].
Cierpka, C. ;
Rossi, M. ;
Segura, R. ;
Kaehler, C. J. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2011, 22 (01)
[6]   A simple single camera 3C3D velocity measurement technique without errors due to depth of correlation and spatial averaging for microfluidics [J].
Cierpka, C. ;
Segura, R. ;
Hain, R. ;
Kaehler, C. J. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2010, 21 (04)
[7]  
CIERPKA C, 2010, 15 INT S APPL LAS TE
[8]   Universal outlier detection for particle image velocimetry (PIV) and particle tracking velocimetry (PTV) data [J].
Duncan, J. ;
Dabiri, D. ;
Hove, J. ;
Gharib, M. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2010, 21 (05)
[9]   Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of long-distance micro-PIV [J].
Kaehler, C. J. ;
Scholz, U. ;
Ortmanns, J. .
EXPERIMENTS IN FLUIDS, 2006, 41 (02) :327-341
[10]  
KAHLER CJ, 2004, 200424 DLR FB