Spatial patterns in CO2 evasion from the global river network

被引:242
作者
Lauerwald, Ronny [1 ,2 ,3 ]
Laruelle, Goulven G. [1 ,4 ]
Hartmann, Jens [3 ]
Ciais, Philippe [5 ]
Regnier, Pierre A. G. [1 ]
机构
[1] Univ Libre Bruxelles, Dept Earth & Environm Sci, Brussels, Belgium
[2] Inst Pierre Simon Laplace, Paris, France
[3] Univ Hamburg, Inst Geol, Hamburg, Germany
[4] Univ Utrecht, Dept Earth Sci Geochem, Utrecht, Netherlands
[5] LSCE IPSL, Gif Sur Yvette, France
关键词
river; CO2; global C cycle; carbon; map; pCO(2); CARBON-DIOXIDE; TEMPORAL VARIABILITY; AQUATIC CONDUIT; FLUXES; LAND; STREAMS; SCHELDT; WATERS; EFFLUX; CYCLE;
D O I
10.1002/2014GB004941
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
CO2 evasion from rivers (FCO2) is an important component of the global carbon budget. Here we present the first global maps of CO2 partial pressures (pCO(2)) in rivers of stream orders 3 and higher and the resulting FCO2 at 0.5 degrees resolution constructed with a statistical model. A geographic information system based approach is used to derive a pCO(2) prediction function trained on data from 1182 sampling locations. While data from Asia and Africa are scarce and the training data set is dominated by sampling locations from the Americas, Europe, and Australia, the sampling locations cover the full spectrum from high to low latitudes. The predictors of pCO(2) are net primary production, population density, and slope gradient within the river catchment as well as mean air temperature at the sampling location (r(2)=0.47). The predicted pCO(2) map was then combined with spatially explicit estimates of stream surface area A(river) and gas exchange velocity k calculated from published empirical equations and data sets to derive the FCO2 map. Using Monte Carlo simulations, we assessed the uncertainties of our estimates. At the global scale, we estimate an average river pCO(2) of 2400 (2019-2826) mu atm and a FCO2 of 650 (483-846) Tg C yr(-1) (5th and 95th percentiles of confidence interval). Our global CO2 evasion is substantially lower than the recent estimate of 1800 Tg C yr(-1) although the training set of pCO(2) is very similar in both studies, mainly due to lower tropical pCO(2) estimates in the present study. Our maps reveal strong latitudinal gradients in pCO(2), A(river), and FCO2. The zone between 10 degrees N and 10 degrees S contributes about half of the global CO2 evasion. Collection of pCO(2) data in this zone, in particular, for African and Southeast Asian rivers is a high priority to reduce uncertainty on FCO2.
引用
收藏
页码:534 / 554
页数:21
相关论文
共 84 条
  • [1] Amazon River carbon dioxide outgassing fuelled by wetlands
    Abril, Gwenael
    Martinez, Jean-Michel
    Artigas, L. Felipe
    Moreira-Turcq, Patricia
    Benedetti, Marc F.
    Vidal, Luciana
    Meziane, Tarik
    Kim, Jung-Hyun
    Bernardes, Marcelo C.
    Savoye, Nicolas
    Deborde, Jonathan
    Souza, Edivaldo Lima
    Alberic, Patrick
    Landim de Souza, Marcelo F.
    Roland, Fabio
    [J]. NATURE, 2014, 505 (7483) : 395 - +
  • [2] Physical controls on carbon dioxide transfer velocity and flux in low-gradient river systems and implications for regional carbon budgets
    Alin, Simone R.
    Rasera, Maria de Fatima F. L.
    Salimon, Cleber I.
    Richey, Jeffrey E.
    Holtgrieve, Gordon W.
    Krusche, Alex V.
    Snidvongs, Anond
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2011, 116
  • [3] Carbon dynamics in the freshwater part of the Elbe estuary, Germany: Implications of improving water quality
    Amann, Thorben
    Weiss, Andreas
    Hartmann, Jens
    [J]. ESTUARINE COASTAL AND SHELF SCIENCE, 2012, 107 : 112 - 121
  • [4] A catchment-scale assessment of anabranching in the 143000 km2 Fitzroy River catchment, north-eastern Australia
    Amos, Kathryn J.
    Croke, Jacky C.
    Hughes, Andrew O.
    Chapman, Joanne
    Takken, Ingrid
    Lymburner, Leo
    [J]. EARTH SURFACE PROCESSES AND LANDFORMS, 2008, 33 (08) : 1222 - 1241
  • [5] [Anonymous], CLIMATE CHANGE 2007
  • [6] [Anonymous], 2019, R: A language for environment for statistical computing
  • [7] [Anonymous], 2005, Genus
  • [8] [Anonymous], 2006, GLOBAL BIOGEOCHEM CY, DOI DOI 10.1029/2005GB002540
  • [9] [Anonymous], 2013, COMPUTATIONAL GEOMET
  • [10] [Anonymous], PARTNERS PROJ ARCT R