Computing the Diameter of the Space of Maximum Parsimony Reconciliations in the Duplication-Transfer-Loss Model

被引:8
作者
Haack, Jordan [1 ]
Zupke, Eli [2 ]
Ramirez, Natalie [3 ]
Wu, Yi-Chieh [1 ]
Libeskind-Hadas, Ran [1 ]
机构
[1] Harvey Mudd Coll, Claremont, CA 91711 USA
[2] Calif Polytech Univ, Pomona, CA 91768 USA
[3] CALTECH, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
Phylogenetics; tree reconciliation; duplication-transfer-loss model; SIMULTANEOUS IDENTIFICATION; ALGORITHMS;
D O I
10.1109/TCBB.2018.2849732
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Phylogenetic tree reconciliation is widely used in the fields of molecular evolution, cophylogenetics, parasitology, and biogeography to study the evolutionary histories of pairs of entities. In these contexts, reconciliation is often performed using maximum parsimony under the Duplication-Transfer-Loss (DTL) event model. In general, the number of maximum parsimony reconciliations (MPRs) can grow exponentially with the size of the trees. While a number of previous efforts have been made to count the number of MPRs, find representative MPRs, and compute the frequencies of events across the space of MPRs, little is known about the structure of MPR space. In particular, how different are MPRs in terms of the events that they comprise? One way to address this question is to compute the diameter of MPR space, defined to be the maximum number of DTL events that distinguish any two MPRs in the solution space. We show how to compute the diameter of MPR space in polynomial time and then apply this algorithm to a large biological dataset to study the variability of events.
引用
收藏
页码:14 / 22
页数:9
相关论文
共 17 条
  • [1] Bansal Mukul S., 2013, Research in Computational Molecular Biology. 17th Annual International Conference (RECOMB 2013). Proceedings, P1, DOI 10.1007/978-3-642-37195-0_1
  • [2] Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss
    Bansal, Mukul S.
    Alm, Eric J.
    Kellis, Manolis
    [J]. BIOINFORMATICS, 2012, 28 (12) : I283 - I291
  • [3] Traversing the tangle: Algorithms and applications for cophylogenetic studies
    Charleston, NA
    Perkins, SL
    [J]. JOURNAL OF BIOMEDICAL INFORMATICS, 2006, 39 (01) : 62 - 71
  • [4] Simultaneous Identification of Duplications, Losses, and Lateral Gene Transfers
    Chen, Zhi-Zhong
    Deng, Fei
    Wang, Lusheng
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2012, 9 (05) : 1515 - 1528
  • [5] Jane: a new tool for the cophylogeny reconstruction problem
    Conow, Chris
    Fielder, Daniel
    Ovadia, Yaniv
    Libeskind-Hadas, Ran
    [J]. ALGORITHMS FOR MOLECULAR BIOLOGY, 2010, 5
  • [6] Rapid evolutionary innovation during an Archaean genetic expansion
    David, Lawrence A.
    Alm, Eric J.
    [J]. NATURE, 2011, 469 (7328) : 93 - 96
  • [7] Doyon JP, 2010, LECT N BIOINFORMAT, V6398, P93, DOI 10.1007/978-3-642-16181-0_9
  • [8] On the Computational Complexity of the Reticulate Cophylogeny Reconstruction Problem
    Libeskind-Hadas, Ran
    Charleston, Michael A.
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2009, 16 (01) : 105 - 117
  • [9] DTL-RnB: Algorithms and Tools for Summarizing the Space of DTL Reconciliations
    Ma, W.
    Smirnov, D.
    Forman, J.
    Schweickart, A.
    Slocum, C.
    Srinivasan, S.
    Libeskind-Hadas, R.
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2018, 15 (02) : 411 - 421
  • [10] The Cophylogeny Reconstruction Problem Is NP-Complete
    Ovadia, Y.
    Fielder, D.
    Conow, C.
    Libeskind-Hadas, R.
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2011, 18 (01) : 59 - 65