Torsion elements in effect algebras

被引:4
作者
Ji, Wei [1 ]
Xin, Xiao Long [1 ]
机构
[1] NW Univ Xian, Dept Math, Xian 710127, Peoples R China
关键词
Effect algebra; Riesz decomposition property; Basic decomposition of an element; Sharp element; Orthocomplete; DECOMPOSITION; STATES; SHARP;
D O I
10.1007/s00500-011-0712-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We define the torsion element in effect algebras and use it to characterize MV-effect algebra and 0-homogeneous effect algebras in chain-complete effect algebras. As an application, we prove that every element of an orthocomplete homogeneous atomic effect algebra has a unique basic decomposition into a sum of a sharp element and unsharp multiples of atoms. Further, we characterize homogeneity by the set of all sharp elements in orthocomplete atomic effect algebras.
引用
收藏
页码:2501 / 2505
页数:5
相关论文
共 50 条
  • [21] Joins and meets in effect algebras
    Grzegorz Bińczak
    Joanna Kaleta
    Andrzej Zembrzuski
    [J]. Algebra universalis, 2024, 85
  • [22] Atomic Sequential Effect Algebras
    Josef Tkadlec
    [J]. International Journal of Theoretical Physics, 2008, 47 : 185 - 192
  • [23] Interval topology on effect algebras
    Zhu, Sen
    Ma, Zhi-Hao
    [J]. APPLIED MATHEMATICS LETTERS, 2012, 25 (03) : 631 - 635
  • [24] L-effect Algebras
    Rump, Wolfgang
    Zhang, Xia
    [J]. STUDIA LOGICA, 2020, 108 (04) : 725 - 750
  • [25] Sharply Orthocomplete Effect Algebras
    Kalina, M.
    Paseka, J.
    Riecanova, Z.
    [J]. ACTA POLYTECHNICA, 2010, 50 (05) : 51 - 56
  • [26] Atomic sequential effect algebras
    Tkadlec, Josef
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2008, 47 (01) : 185 - 192
  • [27] Centrally orthocomplete effect algebras
    Foulis, David J.
    Pulmannova, Sylvia
    [J]. ALGEBRA UNIVERSALIS, 2010, 64 (3-4) : 283 - 307
  • [28] Central elements and Cantor-Bernstein's theorem for pseudo-effect algebras
    Dvurecenskij, A
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2003, 74 : 121 - 143
  • [29] HILBERT SPACE EFFECT-REPRESENTATIONS OF EFFECT ALGEBRAS
    Riecanova, Z.
    Zajac, M.
    [J]. REPORTS ON MATHEMATICAL PHYSICS, 2012, 70 (03) : 283 - 290
  • [30] E-perfect effect algebras
    Xie, Yongjian
    Li, Yongming
    Yang, Aili
    [J]. SOFT COMPUTING, 2012, 16 (11) : 1923 - 1930