Torsion elements in effect algebras

被引:4
作者
Ji, Wei [1 ]
Xin, Xiao Long [1 ]
机构
[1] NW Univ Xian, Dept Math, Xian 710127, Peoples R China
关键词
Effect algebra; Riesz decomposition property; Basic decomposition of an element; Sharp element; Orthocomplete; DECOMPOSITION; STATES; SHARP;
D O I
10.1007/s00500-011-0712-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We define the torsion element in effect algebras and use it to characterize MV-effect algebra and 0-homogeneous effect algebras in chain-complete effect algebras. As an application, we prove that every element of an orthocomplete homogeneous atomic effect algebra has a unique basic decomposition into a sum of a sharp element and unsharp multiples of atoms. Further, we characterize homogeneity by the set of all sharp elements in orthocomplete atomic effect algebras.
引用
收藏
页码:2501 / 2505
页数:5
相关论文
共 50 条
[21]   Joins and meets in effect algebras [J].
Grzegorz Bińczak ;
Joanna Kaleta ;
Andrzej Zembrzuski .
Algebra universalis, 2024, 85
[22]   Atomic Sequential Effect Algebras [J].
Josef Tkadlec .
International Journal of Theoretical Physics, 2008, 47 :185-192
[23]   Interval topology on effect algebras [J].
Zhu, Sen ;
Ma, Zhi-Hao .
APPLIED MATHEMATICS LETTERS, 2012, 25 (03) :631-635
[24]   L-effect Algebras [J].
Rump, Wolfgang ;
Zhang, Xia .
STUDIA LOGICA, 2020, 108 (04) :725-750
[25]   Atomic sequential effect algebras [J].
Tkadlec, Josef .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2008, 47 (01) :185-192
[26]   Sharply Orthocomplete Effect Algebras [J].
Kalina, M. ;
Paseka, J. ;
Riecanova, Z. .
ACTA POLYTECHNICA, 2010, 50 (05) :51-56
[27]   Centrally orthocomplete effect algebras [J].
Foulis, David J. ;
Pulmannova, Sylvia .
ALGEBRA UNIVERSALIS, 2010, 64 (3-4) :283-307
[28]   Central elements and Cantor-Bernstein's theorem for pseudo-effect algebras [J].
Dvurecenskij, A .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2003, 74 :121-143
[29]   HILBERT SPACE EFFECT-REPRESENTATIONS OF EFFECT ALGEBRAS [J].
Riecanova, Z. ;
Zajac, M. .
REPORTS ON MATHEMATICAL PHYSICS, 2012, 70 (03) :283-290
[30]   0-homogeneous effect algebras [J].
Jenca, Gejza .
SOFT COMPUTING, 2010, 14 (10) :1111-1116