On generalized quadratic matrices

被引:12
作者
Farebrother, RW [1 ]
Trenkler, G [1 ]
机构
[1] Univ Dortmund, Dept Stat, Fachbereich Stat, D-44221 Dortmund, Germany
关键词
generalized quadratic matrices; idempotent matrix; eigenvalue; Moore-Penrose inverse; group inverse;
D O I
10.1016/j.laa.2005.08.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper a wide class of matrices is considered, containing idempotent, involutory, nilpotent and several other types of matrices. Extending an approach considered by Radjavi and Rosenthal [H. Radjavi, P Rosenthal, On commutators of idempotents, Linear Multilinear Algebra 50 (2) (2002) 121-124], we investigate the set Q(P) of square matrices A is an element of C-nxn satisfying the equation A(2) = alpha A + beta A for some complex numbers alpha and beta and for some n x n nonzero complex idempotent matrix P such the AP = PA = A. Special attention is paid to the Moore-Penrose and group inverse of matrices belonging to 2(P). (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:244 / 253
页数:10
相关论文
共 7 条
[1]  
ALCKSIEJCZYK M, 2000, MATH PANNON, V11, P239
[2]  
Ben-Israel A., 2003, GEN INVERSES THEORY, V15
[3]  
Goldberg J. L., 1991, MATRIX THEORY APPL
[4]   MAXIMAL ELEMENTS UNDER THE 3 PARTIAL ORDERS [J].
HARTWIG, RE ;
LOEWY, R .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 175 :39-61
[5]  
Hartwig RE., 1983, LINEAR MULTILINEAR A, V13, P295
[6]   On commutators of idempotents [J].
Radjavi, H ;
Rosenthal, P .
LINEAR & MULTILINEAR ALGEBRA, 2002, 50 (02) :121-124
[7]  
RAO AR, 1992, LINEAR ALGEBRA