Pure Nash equilibria in finite two-person non-zero-sum games

被引:5
作者
Polowczuk, W [1 ]
机构
[1] Wroclaw Univ Technol, Inst Math, PL-50370 Wroclaw, Poland
关键词
pure Nash equilibrium; finite strategy space; concave payoff functions;
D O I
10.1007/s001820300155
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper we study bimatrix games. The payoff matrices have properties closely related to concavity of functions. For such games we find sufficient conditions for the existence of pure Nash equilibria.
引用
收藏
页码:229 / 240
页数:12
相关论文
共 12 条
[1]   Pure Nash equilibria in finite two-person non-zero-sum games [J].
Wojciech Połowczuk .
International Journal of Game Theory, 2003, 32 :229-240
[2]   Discovering theorems in game theory: Two-person games with unique pure Nash equilibrium payoffs [J].
Tang, Pingzhong ;
Lin, Fangzhen .
ARTIFICIAL INTELLIGENCE, 2011, 175 (14-15) :2010-2020
[3]   Pure Nash Equilibria in Bimatrix Games [J].
Krishnamurthy, Nagarajan ;
Mallozzi, Lina .
INTERNATIONAL GAME THEORY REVIEW, 2025,
[4]   Pure Nash equilibria of coordination matrix games [J].
Roberts, DP .
ECONOMICS LETTERS, 2005, 89 (01) :7-11
[5]   Pure Nash equilibria in restricted budget games [J].
Drees, Maximilian ;
Feldotto, Matthias ;
Riechers, Soeren ;
Skopalik, Alexander .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 37 (02) :620-638
[6]   Pure Nash equilibria in restricted budget games [J].
Maximilian Drees ;
Matthias Feldotto ;
Sören Riechers ;
Alexander Skopalik .
Journal of Combinatorial Optimization, 2019, 37 :620-638
[7]   Computing pure Nash equilibria in network revenue management games [J].
Grauberger, W. ;
Kimms, A. .
OR SPECTRUM, 2018, 40 (02) :481-516
[8]   Computing pure Nash equilibria in network revenue management games [J].
W. Grauberger ;
A. Kimms .
OR Spectrum, 2018, 40 :481-516
[9]   Pure-strategy Nash equilibria on competitive diffusion games [J].
Enomoto, Hikoe ;
Hachimori, Masahiro ;
Nakamura, Shun ;
Shigeno, Maiko ;
Tanaka, Yuya ;
Tsugami, Masaaki .
DISCRETE APPLIED MATHEMATICS, 2018, 244 :1-19
[10]   Pure Nash equilibria in weighted matroid congestion games with non-additive aggregation and beyond [J].
Takazawa, Kenjiro .
DISCRETE APPLIED MATHEMATICS, 2025, 361 :226-235