Pure Nash equilibria in finite two-person non-zero-sum games

被引:5
|
作者
Polowczuk, W [1 ]
机构
[1] Wroclaw Univ Technol, Inst Math, PL-50370 Wroclaw, Poland
关键词
pure Nash equilibrium; finite strategy space; concave payoff functions;
D O I
10.1007/s001820300155
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper we study bimatrix games. The payoff matrices have properties closely related to concavity of functions. For such games we find sufficient conditions for the existence of pure Nash equilibria.
引用
收藏
页码:229 / 240
页数:12
相关论文
共 11 条
  • [1] Pure Nash equilibria in finite two-person non-zero-sum games
    Wojciech Połowczuk
    International Journal of Game Theory, 2003, 32 : 229 - 240
  • [2] Discovering theorems in game theory: Two-person games with unique pure Nash equilibrium payoffs
    Tang, Pingzhong
    Lin, Fangzhen
    ARTIFICIAL INTELLIGENCE, 2011, 175 (14-15) : 2010 - 2020
  • [3] Pure Nash equilibria of coordination matrix games
    Roberts, DP
    ECONOMICS LETTERS, 2005, 89 (01) : 7 - 11
  • [4] Pure Nash equilibria in restricted budget games
    Drees, Maximilian
    Feldotto, Matthias
    Riechers, Soeren
    Skopalik, Alexander
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 37 (02) : 620 - 638
  • [5] Pure Nash equilibria in restricted budget games
    Maximilian Drees
    Matthias Feldotto
    Sören Riechers
    Alexander Skopalik
    Journal of Combinatorial Optimization, 2019, 37 : 620 - 638
  • [6] Pure-strategy Nash equilibria on competitive diffusion games
    Enomoto, Hikoe
    Hachimori, Masahiro
    Nakamura, Shun
    Shigeno, Maiko
    Tanaka, Yuya
    Tsugami, Masaaki
    DISCRETE APPLIED MATHEMATICS, 2018, 244 : 1 - 19
  • [7] Computing pure Nash equilibria in network revenue management games
    W. Grauberger
    A. Kimms
    OR Spectrum, 2018, 40 : 481 - 516
  • [8] Computing pure Nash equilibria in network revenue management games
    Grauberger, W.
    Kimms, A.
    OR SPECTRUM, 2018, 40 (02) : 481 - 516
  • [9] Pure Nash equilibria in weighted matroid congestion games with non-additive aggregation and beyond
    Takazawa, Kenjiro
    DISCRETE APPLIED MATHEMATICS, 2025, 361 : 226 - 235
  • [10] Pure Nash Equilibria and Best-Response Dynamics in Random Games
    Amiet, Ben
    Collevecchio, Andrea
    Scarsini, Marco
    Zhong, Ziwen
    MATHEMATICS OF OPERATIONS RESEARCH, 2021, 46 (04) : 1552 - 1572