A NOVEL APPROACH FOR REPLICA SYNCHRONIZATION IN HADOOP DISTRIBUTED FILE SYSTEMS

被引:1
作者
Vini, Miss. J. [1 ]
Nallathamby, Rachel [1 ]
Robin, C. R. Rene [1 ]
机构
[1] Jerusalem Coll Engn, Dept Comp Sci, Madras, Tamil Nadu, India
来源
BIG DATA, CLOUD AND COMPUTING CHALLENGES | 2015年 / 50卷
关键词
Big data; distributed file system; Map Reduce; Hadoop; Adaptive replica synchronization;
D O I
10.1016/j.procs.2015.04.090
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Map Reduce framework provides a scalable model for large scale data intensive computing and fault tolerance. In this paper, we propose an algorithm to improve the I/O performance of the Hadoop distributed file system. The results prove that the proposed algorithm show better I/O performance with comparatively less synchronization (C) 2015 The Authors. Published by Elsevier B.V.
引用
收藏
页码:590 / 595
页数:6
相关论文
共 11 条
[1]  
[Anonymous], MPI MESS PASS INT ST
[2]  
[Anonymous], 2003, P 19 ACM S OP SYST P, DOI [10.1145/1165389.945450, DOI 10.1145/1165389.945450]
[3]  
[Anonymous], P 2011 INT C HIGH PE
[4]  
Gharaibeh A, 2009, HPDC'09: 18TH ACM INTERNATIONAL SYMPOSIUM ON HIGH PERFORMANCE DISTRIBUTED COMPUTING, P217
[5]  
Jianwei Liao, 2012, 2012 41st International Conference on Parallel Processing (ICPP 2012), P168, DOI 10.1109/ICPP.2012.49
[6]  
Liao Jianwei, ADAPTIVE REPLICA SYN
[7]   The Galley parallel file system [J].
Nieuwejaar, N ;
Kotz, D .
PARALLEL COMPUTING, 1997, 23 (4-5) :447-476
[8]  
Schmuck F, 2002, USENIX ASSOCIATION PROCEEDINGS OF THE FAST'02 CONFERENCE ON FILE AND STORAGE TECHNOLOGIES, P231
[9]  
Shvachko K., 2010, 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), P1
[10]  
Vairavanathan E., 2012, Proceedings of the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid 2012), P326, DOI 10.1109/CCGrid.2012.109