Fine-Grained Trajectory-Based Travel Time Estimation for Multi-City Scenarios Based on Deep Meta-Learning

被引:13
作者
Wang, Chenxing [1 ]
Zhao, Fang [1 ]
Zhang, Haichao [1 ]
Luo, Haiyong [2 ]
Qin, Yanjun [1 ]
Fang, Yuchen [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Natl Pilot Software Engn Sch, Sch Comp Sci, Beijing 100876, Peoples R China
[2] Chinese Acad Sci, Inst Comp Technol, Beijing Key Lab Mobile Comp & Pervas Device, Beijing 100080, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Estimation; Trajectory; Task analysis; Urban areas; Roads; Data models; Global Positioning System; Spatial-temporal data mining; travel time estimation; meta learning; deep learning; NEURAL-NETWORK;
D O I
10.1109/TITS.2022.3145382
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Travel Time Estimation (TTE) is indispensable in intelligent transportation system (ITS). It is significant to achieve the fine-grained Trajectory-based Travel Time Estimation (TTTE) for multi-city scenarios, namely to accurately estimate travel time of the given trajectory for multiple city scenarios. However, it faces great challenges due to complex factors including dynamic temporal dependencies and fine-grained spatial dependencies. To tackle these challenges, we propose a meta learning based framework, MetaTTE, to continuously provide accurate travel time estimation over time by leveraging well-designed deep neural network model called DED, which consists of Data preprocessing module and Encoder-Decoder network module. By introducing meta learning techniques, the generalization ability of MetaTTE is enhanced using small amount of examples, which opens up new opportunities to increase the potential of achieving consistent performance on TTTE when traffic conditions and road networks change over time in the future. The DED model adopts an encoder-decoder network to capture fine-grained spatial and temporal representations. Extensive experiments on two real-world datasets are conducted to confirm that our MetaTTE outperforms nine state-of-art baselines, and improve 29.35% and 25.93% accuracy than the best baseline on Chengdu and Porto datasets, respectively.
引用
收藏
页码:15716 / 15728
页数:13
相关论文
共 40 条
  • [1] Multi-scale learning for fine-grained traffic flow-based travel time estimation prediction
    Ul Abideen, Zain
    Sun, Xiaodong
    Sun, Chao
    COMPUTATIONAL INTELLIGENCE, 2024, 40 (05)
  • [2] A Survey of Fine-Grained Visual Categorization Based on Deep Learning
    Xie, Yuxiang
    Gong, Quanzhi
    Luan, Xidao
    Yan, Jie
    Zhang, Jiahui
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2024, 35 (06) : 1337 - 1356
  • [3] Nei-TTE: Intelligent Traffic Time Estimation Based on Fine-Grained Time Derivation of Road Segments for Smart City
    Qiu, Jing
    Du, Lei
    Zhang, Dongwen
    Su, Shen
    Tian, Zhihong
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (04) : 2659 - 2666
  • [4] Vehicle-Based Evolutionary Travel Time Estimation with Deep Meta Learning
    Wang, Chenxing
    Zhao, Fang
    Luo, Haiyong
    Fang, Yuchen
    Zhang, Haichao
    Xiong, Haoyu
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING-ICANN 2024, PT IX, 2024, 15024 : 246 - 262
  • [5] Fine-Grained Classification of Hyperspectral Imagery Based on Deep Learning
    Chen, Yushi
    Huang, Lingbo
    Zhu, Lin
    Yokoya, Naoto
    Jia, Xiuping
    REMOTE SENSING, 2019, 11 (22)
  • [6] A model for fine-grained vehicle classification based on deep learning
    Yu, Shaoyong
    Wu, Yun
    Li, Wei
    Song, Zhijun
    Zeng, Wenhua
    NEUROCOMPUTING, 2017, 257 : 97 - 103
  • [7] A survey of fine-grained visual categorization based on deep learning
    Xie Yuxiang
    Gong Quanzhi
    Luan Xidao
    Yan Jie
    Zhang Jiahui
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2023,
  • [8] Fine-grained restoration of Mongolian patterns based on a multi-stage deep learning network
    Zhang, Lingna
    Chen, Junjie
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [9] VulDeeLocator: A Deep Learning-Based Fine-Grained Vulnerability Detector
    Li, Zhen
    Zou, Deqing
    Xu, Shouhuai
    Chen, Zhaoxuan
    Zhu, Yawei
    Jin, Hai
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2022, 19 (04) : 2821 - 2837
  • [10] A review of fine-grained sketch image retrieval based on deep learning
    Luo, Qing
    Gao, Xiang
    Jiang, Bo
    Yan, Xueting
    Liu, Wanyuan
    Ge, Junchao
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (12) : 21186 - 21210