Assessment of Parkinson's Disease Severity based on Automatic Analysis of Facial Expressions and Motor Activity of the Hands

被引:0
作者
Moshkova, Anastasia [1 ]
Samorodov, Andrey [1 ]
Ivanova, Ekaterina [2 ]
Ershova, Margarita [2 ]
Fedotova, Ekaterina [2 ]
机构
[1] Bauman Moscow State Tech Univ, Biomed Engn Dept, Moscow, Russia
[2] Res Ctr Neurol, Neurol Dept 5, Moscow, Russia
来源
PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES (BIODEVICES), VOL 1 | 2021年
关键词
Parkinson's Disease; Hypokinesia; Machine Learning; MDS-UPDRS; Facial Expressions; Hand Movement; Disease Severity;
D O I
10.5220/0010971200003123
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Assessment of the severity of the disease is an important task in the study of Parkinson's disease. Using non-contact methods for assessing the motor activity of patients, quantitative assessments of motor parameters were obtained, including the assessment of facial expressions and the motor activity of the hands of patients with PD. The study involved 18 patients with PD, whose facial expressions and the motor activity of the hands assessed using the MDS-UPDRS scale by neurologist. In this paper, a regression model was developed that allows to predict the total MDS-UPDRS scores for 3 hand movement exercises with R2 0.781 and RMSE 0.893 based on 5 features of motor activity. To predict the MDS-UPDRS scores, the classification problem is also solved. The patient group was divided into 2 groups according to the severity of the disease based on the fitting of a cut-off value, which is the median value of the MDS-UPDRS scores. The feature space was reduced to 4 using PCA. The best classification result 95% was obtained using logistic regression and support vector machine in a 5-fold cross-validation mode.
引用
收藏
页码:322 / 327
页数:6
相关论文
共 17 条
[1]  
Anishchenko L, 2019, PR ELECTROMAGN RES S, P3553, DOI [10.1109/PIERS-Spring46901.2019.9017470, 10.1109/piers-spring46901.2019.9017470]
[2]   IMMUNOCYTOCHEMICAL ANALYSIS OF TUMOR-NECROSIS-FACTOR AND ITS RECEPTORS IN PARKINSONS-DISEASE [J].
BOKA, G ;
ANGLADE, P ;
WALLACH, D ;
JAVOYAGID, F ;
AGID, Y ;
HIRSCH, EC .
NEUROSCIENCE LETTERS, 1994, 172 (1-2) :151-154
[3]   Deep 1D-Convnet for accurate Parkinson disease detection and severity prediction from gait [J].
El Maachi, Imanne ;
Bilodeau, Guillaume-Alexandre ;
Bouachir, Wassim .
EXPERT SYSTEMS WITH APPLICATIONS, 2020, 143
[4]   Technology in Parkinson's disease: Challenges and opportunities [J].
Espay, Alberto J. ;
Bonato, Paolo ;
Nahab, Fatta B. ;
Maetzler, Walter ;
Dean, John M. ;
Klucken, Jochen ;
Eskofier, Bjoern M. ;
Merola, Aristide ;
Horak, Fay ;
Lang, Anthony E. ;
Reilmann, Ralf ;
Giuffrida, Joe ;
Nieuwboer, Alice ;
Horne, Malcolm ;
Little, Max A. ;
Litvan, Irene ;
Simuni, Tanya ;
Dorsey, E. Ray ;
Burack, Michelle A. ;
Kubota, Ken ;
Kamondi, Anita ;
Godinho, Catarina ;
Daneault, Jean-Francois ;
Mitsi, Georgia ;
Krinke, Lothar ;
Hausdorff, Jeffery M. ;
Bloem, Bastiaan R. ;
Papapetropoulos, Spyros .
MOVEMENT DISORDERS, 2016, 31 (09) :1272-1282
[5]   A Self-Managed System for Automated Assessment of UPDRS Upper Limb Tasks in Parkinson's Disease [J].
Ferraris, Claudia ;
Nerino, Roberto ;
Chimienti, Antonio ;
Pettiti, Giuseppe ;
Cau, Nicola ;
Cimolin, Veronica ;
Azzaro, Corrado ;
Albani, Giovanni ;
Priano, Lorenzo ;
Mauro, Alessandro .
SENSORS, 2018, 18 (10)
[6]   Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS): Scale Presentation and Clinimetric Testing Results [J].
Goetz, Christopher G. ;
Tilley, Barbara C. ;
Shaftman, Stephanie R. ;
Stebbins, Glenn T. ;
Fahn, Stanley ;
Martinez-Martin, Pablo ;
Poewe, Werner ;
Sampaio, Cristina ;
Stern, Matthew B. ;
Dodel, Richard ;
Dubois, Bruno ;
Holloway, Robert ;
Jankovic, Joseph ;
Kulisevsky, Jaime ;
Lang, Anthony E. ;
Lees, Andrew ;
Leurgans, Sue ;
LeWitt, Peter A. ;
Nyenhuis, David ;
Olanow, C. Warren ;
Rascol, Olivier ;
Schrag, Anette ;
Teresi, Jeanne A. ;
van Hilten, Jacobus J. ;
LaPelle, Nancy .
MOVEMENT DISORDERS, 2008, 23 (15) :2129-2170
[7]   Machine learning ensemble for neurological disorders [J].
Kaur, Harkawalpreet ;
Malhi, Avleen Kaur ;
Pannu, Husanbir Singh .
NEURAL COMPUTING & APPLICATIONS, 2020, 32 (16) :12697-12714
[8]   Objective evaluation of bradykinesia in Parkinson's disease using an inexpensive marker-less motion tracking system [J].
Lee, Wee Lih ;
Sinclair, Nicholas C. ;
Jones, Mary ;
Tan, Joy L. ;
Proud, Elizabeth L. ;
Peppard, Richard ;
McDermott, Hugh J. ;
Perera, Thushara .
PHYSIOLOGICAL MEASUREMENT, 2019, 40 (01)
[9]  
Lin ZR, 2017, IEEE ENG MED BIO, P803, DOI 10.1109/EMBC.2017.8036946
[10]   Quantifying Parkinson's disease motor severity under uncertainty using MDS-UPDRS videos [J].
Lu, Mandy ;
Zhao, Qingyu ;
Poston, Kathleen L. ;
Sullivan, Edith, V ;
Pfefferbaum, Adolf ;
Shahid, Marian ;
Katz, Maya ;
Montaser-Kouhsari, Leila ;
Schulman, Kevin ;
Milstein, Arnold ;
Niebles, Juan Carlos ;
Henderson, Victor W. ;
Li Fei-Fei ;
Pohl, Kilian M. ;
Adeli, Ehsan .
MEDICAL IMAGE ANALYSIS, 2021, 73