Approximate analytical solution of two-dimensional space-time fractional diffusion equation

被引:10
作者
Pandey, Prashant [1 ,2 ]
Kumar, Sachin [1 ,2 ]
Gomez, Francisco [3 ]
机构
[1] BHU, Dept Math Sci, Indian Inst Technol, Varanasi, Uttar Pradesh, India
[2] Goverment MGM PG Coll, Dept Math, Itarsi, Uttar Pradesh, India
[3] CONACyT, Tecnol Nacl Mexico, CENIDET, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
关键词
boundary value problems with impulses; fractional calculus; fractional partial differential equations; HOMOTOPY-PERTURBATION METHOD; OPERATIONAL MATRIX; NUMERICAL-SOLUTION; LEGENDRE WAVELETS; INTEGRATION; ALGORITHM;
D O I
10.1002/mma.6456
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work presents an iterative scheme for the numerical solution of the space-time fractional two-dimensional advection-reaction-diffusion equation applying homotopy perturbation with Laplace transform using Caputo fractional-order derivatives. The solution obtained is beneficial and significant to analyze the modeling of superdiffusive systems and subdiffusive system, anomalous diffusion, transport process in porous media. This iterative technique presents the combination of homotopy perturbation technique, and Laplace transforms with He's polynomials, which can further be applied to numerous linear/nonlinear two-dimensional fractional models to computes the approximate analytical solution. In the present method, the nonlinearity can be tackle by He's polynomials. The salient features of the present scientific work are the pictorial presentations of the approximate numerical solution of the two-dimensional fractional advection-reaction-diffusion equation for different particular cases of fractional order and showcasing of the damping effect of reaction terms on the nature of probability density function of the considered two-dimensional nonlinear mathematical models for various situations.
引用
收藏
页码:7194 / 7207
页数:14
相关论文
共 50 条
  • [1] Analytical Approximate Solution of Space-Time Fractional Diffusion Equation with a Moving Boundary Condition
    Das, Subir
    Kumar, Rajnesh
    Gupta, Praveen Kumar
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2011, 66 (05): : 281 - 288
  • [2] Analytical solution of the space-time fractional hyperdiffusion equation
    Tawfik, Ashraf M.
    Fichtner, Horst
    Elhanbaly, A.
    Schlickeiser, Reinhard
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 510 : 178 - 187
  • [3] Two Approaches to Obtaining the Space-Time Fractional Advection-Diffusion Equation
    Povstenko, Yuriy
    Kyrylych, Tamara
    ENTROPY, 2017, 19 (07)
  • [4] Approximate Analytical Solution of Two-Dimensional Nonlinear Time-Fractional Damped Wave Equation in the Caputo Fractional Derivative Operator
    Deresse, Alemayehu Tamirie
    Mussa, Yesuf Obsie
    Gizaw, Ademe Kebede
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [5] A space-time Legendre spectral tau method for the two-sided space-time Caputo fractional diffusion-wave equation
    Bhrawy, A. H.
    Zaky, M. A.
    Van Gorder, R. A.
    NUMERICAL ALGORITHMS, 2016, 71 (01) : 151 - 180
  • [6] Parallel-in-time multigrid for space-time finite element approximations of two-dimensional space-fractional diffusion equations
    Yue, Xiaoqiang
    Shu, Shi
    Xu, Xiaowen
    Bu, Weiping
    Pan, Kejia
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (11) : 3471 - 3484
  • [7] Analytical solution of the time fractional diffusion equation and fractional convection-diffusion equation
    Morales-Delgado, V. F.
    Gomez-Aguilar, J. F.
    Taneco-Hernandez, M. A.
    REVISTA MEXICANA DE FISICA, 2019, 65 (01) : 82 - 88
  • [8] Approximate Analytical Solution of Time-fractional order Cauchy-Reaction Diffusion equation
    Shukla, H. S.
    Tamsir, Mohammad
    Srivastava, Vineet K.
    Kumar, Jai
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2014, 103 (01): : 1 - 17
  • [9] Compact ADI Method for Two-Dimensional Riesz Space Fractional Diffusion Equation
    Valizadeh, Sohrab
    Malek, Alaeddin
    Borhanifara, Abdollah
    FILOMAT, 2021, 35 (05) : 1543 - 1554
  • [10] Space-time pseudospectral method for the variable-order space-time fractional diffusion equation
    Gupta, Rupali
    Kumar, Sushil
    MATHEMATICAL SCIENCES, 2024, 18 (03) : 419 - 436