Fractional calculus operators with Appell function kernels applied to Srivastava polynomials and extended Mittag-Leffler function

被引:19
作者
Nisar, Kottakkaran Sooppy [1 ]
Suthar, D. L. [2 ]
Agarwal, R. [3 ]
Purohit, S. D. [4 ]
机构
[1] Prince Sattam Bin Abdulaziz Univ, Coll Arts & Sci, Dept Math, Wadi Aldawasir, Saudi Arabia
[2] Wollo Univ, Dept Math, Dessie, Amahara Region, Ethiopia
[3] Malaviya Natl Inst Technol, Dept Math, Jaipur, Rajasthan, India
[4] Rajasthan Tech Univ, Dept HEAS Math, Kota, India
关键词
Extended Mittag-Leffler function; Srivastava polynomial; Wright-type hypergeometric functions; Extended Wright-type hypergeometric functions; GENERAL-CLASS; INTEGRATION; PRODUCT;
D O I
10.1186/s13662-020-02610-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article aims to establish certain image formulas associated with the fractional calculus operators with Appell function in the kernel and Caputo-type fractional differential operators involving Srivastava polynomials and extended Mittag-Leffler function. The main outcomes are presented in terms of the extended Wright function. In addition, along with the noted outcomes, the implications are also highlighted.
引用
收藏
页数:14
相关论文
共 44 条
  • [1] Modelling groundwater fractal flow with fractional differentiation via Mittag-Leffler law
    Ahokposi, D. P.
    Atangana, Abdon
    Vermeulen, D. P.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (04):
  • [2] Fractional Calculus of Extended Mittag-Leffler Function and Its Applications to Statistical Distribution
    Araci, Serkan
    Rahman, Gauhar
    Ghaffar, Abdul
    Azeema
    Nisar, Kottakkaran Sooppy
    [J]. MATHEMATICS, 2019, 7 (03):
  • [4] Generalized fractional integrals of product of two H-functions and a general class of polynomials
    Baleanu, D.
    Kumar, Dinesh
    Purohit, S. D.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (08) : 1320 - 1329
  • [5] Generalized fractal kinetics in complex systems (application to biophysics and biotechnology)
    Brouers, F.
    Sotolongo-Costa, O.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 368 (01) : 165 - 175
  • [6] Brouers F., 2014, J. Mod. Phys, V5, P1594, DOI [10.4236/jmp.2014.516160, DOI 10.4236/JMP.2014.516160, DOI 10.4236/jmp.2014.516160]
  • [7] Chaudhry MA, 1997, J COMPUT APPL MATH, V78, P19, DOI 10.1016/S0377-0427(96)00102-1
  • [8] New methodologies in fractional and fractal derivatives modeling
    Chen, Wen
    Liang, Yingjie
    [J]. CHAOS SOLITONS & FRACTALS, 2017, 102 : 72 - 77
  • [9] Chouhan A., 2014, J FRACTIONAL CALCULU, V5, P88
  • [10] Dorrego G. A., 2012, International Journal of Contemporary Mathematical Sciences, V7, P705