The Discriminant Model of Wind Turbine SCADA Normal Data Based on Random Forest

被引:0
|
作者
He, Sheng [1 ]
Zhao, Qiancheng [1 ]
Zhang, Yingzhe [1 ]
Wang, Xian [2 ]
机构
[1] Hunan Univ Sci & Technol, Engn Res Ctr Hunan Prov Min & Utilizat Wind Turbi, Xiangtan 411201, Hunan, Peoples R China
[2] Hunan Univ Sci & Technol, Sch Mech Engn, Xiangtan 411201, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
SCADA data; wind turbine; random forest; wind power;
D O I
10.1117/12.2612196
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Nowadays, the number of assembled wind turbines in the world is growing more rapidly, which brings an urgent need for intelligent operation and maintenance of wind turbines. The intelligence of wind turbine operation and maintenance is based on the high-precision classification and recognition of SCADA(Supervisory Control And Data Acquisition) system data. In response to this demand, this paper establishes a wind turbine normal data discrimination model that combines SCADA system data preprocessing and random forest integrated learner. First, obtain a determinable sample dataset according to the principles of statistics and the NearMiss under-sampling method. Then build a decision tree, use the features in a variety of SCADA datasets to train and learn the sample dataset, and form a random forest to determine the normal data model of wind turbines. The results show that the model can effectively classify whether the SCADA data of wind turbines is normal, achieve a higher accuracy rate, and improve the reliability of discrimination, which is of great significance to the subsequent research on intelligent operation and maintenance of wind turbines.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] A generalized model for wind turbine anomaly identification based on SCADA data
    Sun, Peng
    Li, Jian
    Wang, Caisheng
    Lei, Xiao
    APPLIED ENERGY, 2016, 168 : 550 - 567
  • [2] Wind Turbine Anomaly Detection Using Normal Behavior Models based on SCADA Data
    Sun, Peng
    Li, Jian
    Yan, Yonglong
    Lei, Xiao
    Zhang, Xiaomeng
    2014 INTERNATIONAL CONFERENCE ON HIGH VOLTAGE ENGINEERING AND APPLICATION (ICHVE), 2014,
  • [3] Analysis of Wind Turbine Vibrations Based on SCADA Data
    Kusiak, Andrew
    Zhang, Zijun
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2010, 132 (03): : 0310081 - 03100812
  • [4] Wind turbine fault detection based on the transformer model using SCADA data
    Maldonado-Correa, Jorge
    Torres-Cabrera, Joel
    Martin-Martinez, Sergio
    Artigao, Estefania
    Gomez-Lazaro, Emilio
    ENGINEERING FAILURE ANALYSIS, 2024, 162
  • [5] Monitoring Wind Turbine Vibration Based on SCADA Data
    Zhang, Zijun
    Kusiak, Andrew
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2012, 134 (02):
  • [6] Wind Turbine Anomaly Detection Based on SCADA Data Mining
    Liu, Xiaoyuan
    Lu, Senxiang
    Ren, Yan
    Wu, Zhenning
    ELECTRONICS, 2020, 9 (05)
  • [7] Wind Turbine Condition Monitoring based on SCADA Data Analysis
    Yin, Haolin
    Jia, Rong
    Ma, Fuqi
    Wang, Dameng
    PROCEEDINGS OF 2018 IEEE 3RD ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC 2018), 2018, : 1101 - 1105
  • [8] Research on Fault Diagnosis of Wind Turbine Based on SCADA Data
    Liu, Yirong
    Wu, Zidong
    Wang, Xiaoli
    IEEE ACCESS, 2020, 8 : 185557 - 185569
  • [9] Wind Turbine Condition Monitoring Based on SCADA Data Analysis
    Zhang, Jing-Hao
    Hu, Ya-Xin
    Ma, Jiao-Jiao
    Zhen, Dong
    Shi, Zhan-Qun
    2015 INTERNATIONAL CONFERENCE ON MECHANICAL SCIENCE AND MECHANICAL DESIGN, MSMD 2015, 2015, : 162 - 169
  • [10] Abnormal Detection of Wind Turbine Based on SCADA Data Mining
    Tao, Liang
    Qian Siqi
    Zhang, Yingjuan
    Shi, Huan
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2019, 2019