Asymptotic Analysis and a Uniformly Convergent Numerical Method for Singular Perturbation Problems

被引:0
作者
Liu, Anning [1 ]
Huang, Zhongyi [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
Tailored finite point method; singular perturbation problem; asymptotic analysis; FINITE POINT METHOD; BOUNDARY-VALUE-PROBLEMS; HELMHOLTZ-EQUATION;
D O I
10.4208/eajam.291220.120421
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Approximation methods for boundary problems for a fourth-order singularly perturbed partial differential equation (PDE) are studied. Using a suitable variable change, we reduce the problem to a second-order PDE system with coupled boundary conditions. Taking into account asymptotic expansions of the solutions, we discrete the resulting problem by a tailored finite point method. It is proved that the scheme converges uniformly with respect to the small parameter involved. Numerical results are consistent with the theoretical findings.
引用
收藏
页码:755 / 787
页数:33
相关论文
共 41 条
[1]  
AKRAM G, 2013, MIDDLE EAST J SCI RE, V15, P302, DOI DOI 10.5829/idosi.mejsr.2013.15.2.789
[2]  
[Anonymous], 1991, SINGULAR PERTURBATIO
[3]  
[Anonymous], 2011, Principles of Multiscale Modeling
[4]  
Doolan E.P., 1980, UNIFORM NUMERICAL ME
[5]   A uniformly convergent finite difference scheme for a singularly perturbed semilinear equation [J].
Farrell, PA ;
Miller, JJH ;
ORiordan, E ;
Shishkin, GI .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (03) :1135-1149
[6]   SINGULARLY PERTURBED HIGHER-ORDER BOUNDARY-VALUE-PROBLEMS [J].
FECKAN, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 111 (01) :79-102
[7]   Robust error estimation in energy and balanced norms for singularly perturbed fourth order problems [J].
Franz, Sebastian ;
Roos, Hans-Goerg .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 72 (01) :233-247
[8]  
GARTLAND EC, 1988, MATH COMPUT, V51, P631, DOI 10.1090/S0025-5718-1988-0935072-1
[9]   DIFFERENTIABILITY PROPERTIES OF SOLUTIONS OF THE EQUATION -EPSILON-2-DELTA-U+RU=F(X,Y) IN A SQUARE [J].
HAN, H ;
KELLOGG, RB .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1990, 21 (02) :394-408
[10]  
Han HD, 2008, J COMPUT MATH, V26, P728