On the existence of global solutions of the Hartree equation for initial data in the modulation space Mp(qR)

被引:1
作者
Manna, Ramesh [1 ]
机构
[1] Natl Inst Sci Educ & Res, OCC Homi Bhabha Natl Inst, Sch Math Sci, Bhubaneswar 752050, India
关键词
Non-linear Hartree equation; Global well-posedness; Modulation spaces; NONLINEAR SCHRODINGER-EQUATIONS; CAUCHY-PROBLEM; FOURIER MULTIPLIERS; DISPERSIVE EQUATIONS; WELL-POSEDNESS; WELLPOSEDNESS; NLS;
D O I
10.1016/j.jde.2022.02.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the Cauchy problem for Hartree type equation iu(t) + u(xx) = [K * vertical bar u vertical bar(2)] with Cauchy data in modulation spaces Mp,q(R). We establish global well-posedness results in Mp,p' (R) when K(x) = lambda/vertical bar x vertical bar(gamma), (lambda is an element of R, 0 < gamma < 1) with no smallness condition on initial data, where p' is the Holder conjugate of p. Our proof uses a splitting method inspired by the work of Vargas-Vega, Hyakuna-Tsutsumi, Grunrock and Chaichenets et al. to the modulation space setting and exploits polynomial growth of the Schrodinger propagator on modulation spaces. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:70 / 88
页数:19
相关论文
共 34 条