Uncertainty quantification of modal characteristics identified from frequency-domain stochastic subspace identification

被引:5
作者
Reynders, Edwin [1 ]
Maes, Kristof [1 ]
机构
[1] Katholieke Univ Leuven, Dept Civil Engn, Kasteelpk Arenberg 40, B-3001 Heverlee, Belgium
来源
X INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS (EURODYN 2017) | 2017年 / 199卷
基金
比利时弗兰德研究基金会;
关键词
system identification; frequency-domain methods; uncertainty quantification; operational modal analysis;
D O I
10.1016/j.proeng.2017.09.231
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Stochastic subspace identification has become an industrial standard for operational modal analysis because of its computational efficiency and statistical optimality. For the time-domain version of the algorithm, a computationally efficient method exists for the estimation of (co)variances of the identified system matrices and the related modal characteristics. In the present paper, a computationally efficient uncertainty quantification method is developed for a frequency-domain subspace algorithm that starts from nonparametric positive power spectral density estimates. A connection with the time-domain method is made, and the performance is verified against Monte Carlo simulations in a numerical experiment. (c) 2017 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:996 / 1001
页数:6
相关论文
共 14 条
  • [11] A subspace algorithm for the identification of discrete time frequency domain power spectra
    Van Overschee, P
    De Moor, B
    Dehandschutter, W
    Swevers, J
    [J]. AUTOMATICA, 1997, 33 (12) : 2147 - 2157
  • [12] Van OverscheeP., 1996, SUBSPACE IDENTIFICAT
  • [13] Continuous-time frequency domain subspace system identification
    VanOverschee, P
    DeMoor, B
    [J]. SIGNAL PROCESSING, 1996, 52 (02) : 179 - 194
  • [14] Improved modal parameter estimation for lowly damped systems using non-parametric exponential windowing techniques
    Verboven, P
    Parloo, E
    Cauberghe, B
    Guillaume, P
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2005, 19 (04) : 675 - 699