Metal-Organic Frameworks for Batteries

被引:529
|
作者
Zhao, Ruo [1 ,2 ]
Liang, Zibin [1 ]
Zou, Ruqiang [1 ]
Xu, Qiang [2 ,3 ]
机构
[1] Peking Univ, Beijing Key Lab Theory & Technol Adv Battery Mat, Dept Mat Sci & Engn, Coll Engn, Beijing 100871, Peoples R China
[2] Kyoto Univ, AIST, Chem Energy Mat Open Innovat Lab, Sakyo Ku, Kyoto 6068501, Japan
[3] Yangzhou Univ, Sch Chem & Chem Engn, Yangzhou, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
PRUSSIAN BLUE ANALOGS; POROUS CARBON POLYHEDRA; LITHIUM-SULFUR BATTERY; COMPOSITE POLYMER ELECTROLYTES; HIGH-PERFORMANCE ANODES; REDOX-ACTIVE SITES; BINDER-FREE ANODE; NA-ION BATTERIES; CATHODE MATERIALS; ENERGY-STORAGE;
D O I
10.1016/j.joule.2018.09.019
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metal-organic frameworks (MOFs) and their derivatives are two developing families of functional materials for energy storage and conversion. Their high porosity, versatile functionalities, diverse structures, and controllable chemical compositions offer immense possibilities in the search for adequate electrode materials for rechargeable batteries. Despite these advantageous features, MOFs and their derivatives as electrode materials face various challenging issues, which impede their practical applications. From this perspective, we present both the opportunities and challenges that MOFs/MOF composites and MOF-derived materials bring to rechargeable batteries, including lithium-ion batteries, lithium-sulfur batteries, lithium-oxygen batteries, and sodium-ion batteries. By discussing the development of MOFs/MOF composites and MOF-derived materials in each battery system, some design principles that dominate the specific electrochemical behaviors are outlined, with the key requirements that a practical electrode should fulfill At the end, a basic guidance and future directions for further development are provided.
引用
收藏
页码:2235 / 2259
页数:25
相关论文
共 50 条
  • [41] Plasmonic metal-organic frameworks
    Zheng, Guangchao
    Pastoriza-Santos, Isabel
    Perez-Juste, Jorge
    Liz-Marzan, Luis M.
    SMARTMAT, 2021, 2 (04): : 446 - 465
  • [42] Ferroelectric Metal-Organic Frameworks
    Zhang, Wen
    Xiong, Ren-Gen
    CHEMICAL REVIEWS, 2012, 112 (02) : 1163 - 1195
  • [43] Electrocatalytic metal-organic frameworks
    Noh, Hyunho
    Peters, Aaron
    Farha, Omar
    Hupp, Joseph
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [44] Gyroidal Metal-Organic Frameworks
    Zhou, Xiao-Ping
    Li, Mian
    Liu, Jie
    Li, Dan
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (01) : 67 - 70
  • [45] Metal-organic frameworks: The pressure is on
    PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche de Chimie Paris, Paris, France
    Acta Crystallogr. Sect. B Struct. Sci. Crys. Eng. Mater., (585-586):
  • [46] Metal-Organic Frameworks in Motion
    Terzopoulou, Anastasia
    Nicholas, James D.
    Chen, Xiang-Zhong
    Nelson, Bradley J.
    Pane, Salvador
    Puigmarti-Luis, Josep
    CHEMICAL REVIEWS, 2020, 120 (20) : 11175 - 11193
  • [47] Metal-organic frameworks: the pressure is on
    Coudert, Francois-Xavier
    ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS, 2015, 71 : 585 - 586
  • [48] Introduction to Metal-Organic Frameworks
    Zhou, Hong-Cai
    Long, Jeffrey R.
    Yaghi, Omar M.
    CHEMICAL REVIEWS, 2012, 112 (02) : 673 - 674
  • [49] Flexible metal-organic frameworks
    Schneemann, A.
    Bon, V.
    Schwedler, I.
    Senkovska, I.
    Kaskel, S.
    Fischer, R. A.
    CHEMICAL SOCIETY REVIEWS, 2014, 43 (16) : 6062 - 6096
  • [50] Lanthanide metal-organic frameworks
    Borovkov, Victor
    FRONTIERS IN CHEMISTRY, 2015, 3