Metal-Organic Frameworks for Batteries

被引:536
|
作者
Zhao, Ruo [1 ,2 ]
Liang, Zibin [1 ]
Zou, Ruqiang [1 ]
Xu, Qiang [2 ,3 ]
机构
[1] Peking Univ, Beijing Key Lab Theory & Technol Adv Battery Mat, Dept Mat Sci & Engn, Coll Engn, Beijing 100871, Peoples R China
[2] Kyoto Univ, AIST, Chem Energy Mat Open Innovat Lab, Sakyo Ku, Kyoto 6068501, Japan
[3] Yangzhou Univ, Sch Chem & Chem Engn, Yangzhou, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
PRUSSIAN BLUE ANALOGS; POROUS CARBON POLYHEDRA; LITHIUM-SULFUR BATTERY; COMPOSITE POLYMER ELECTROLYTES; HIGH-PERFORMANCE ANODES; REDOX-ACTIVE SITES; BINDER-FREE ANODE; NA-ION BATTERIES; CATHODE MATERIALS; ENERGY-STORAGE;
D O I
10.1016/j.joule.2018.09.019
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metal-organic frameworks (MOFs) and their derivatives are two developing families of functional materials for energy storage and conversion. Their high porosity, versatile functionalities, diverse structures, and controllable chemical compositions offer immense possibilities in the search for adequate electrode materials for rechargeable batteries. Despite these advantageous features, MOFs and their derivatives as electrode materials face various challenging issues, which impede their practical applications. From this perspective, we present both the opportunities and challenges that MOFs/MOF composites and MOF-derived materials bring to rechargeable batteries, including lithium-ion batteries, lithium-sulfur batteries, lithium-oxygen batteries, and sodium-ion batteries. By discussing the development of MOFs/MOF composites and MOF-derived materials in each battery system, some design principles that dominate the specific electrochemical behaviors are outlined, with the key requirements that a practical electrode should fulfill At the end, a basic guidance and future directions for further development are provided.
引用
收藏
页码:2235 / 2259
页数:25
相关论文
共 50 条
  • [21] Metal-organic frameworks and their derivatives as electrode materials for Li-ion batteries: a mini review
    Chen, Yueying
    Du, Wenqing
    Dou, Bingxin
    Chen, Jiahao
    Hu, Lei
    Zeb, Akif
    Lin, Xiaoming
    CRYSTENGCOMM, 2022, 24 (15) : 2729 - 2743
  • [22] Metal-organic frameworks containing solid-state electrolytes for lithium metal batteries and beyond
    Chen, Tianhua
    Chen, Shimou
    Chen, Yong
    Zhao, Ming
    Losic, Dusan
    Zhang, Suojiang
    MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (04) : 1771 - 1794
  • [23] Metal-Organic Frameworks and Their Derivatives: Designing Principles and Advances toward Advanced Cathode Materials for Alkali Metal Ion Batteries
    Zhu, Wei
    Li, Ang
    Wang, Zhuanping
    Yang, Jixing
    Xu, Yunhua
    SMALL, 2021, 17 (22)
  • [24] The application of metal-organic frameworks in electrode materials for lithium-ion and lithium-sulfur batteries
    Zhu, Ji Ping
    Wang, Xiu Hao
    Zuo, Xiu Xiu
    ROYAL SOCIETY OPEN SCIENCE, 2019, 6 (07):
  • [25] Recent advances in metal organic frameworks and their composites for batteries
    Xu, Yuxia
    Li, Qing
    Pang, Huan
    NANO FUTURES, 2020, 4 (03)
  • [26] Metal-Organic Frameworks and Their Composites: Synthesis and Electrochemical Applications
    Yi, Fei-Yan
    Zhang, Rui
    Wang, Hailong
    Chen, Li-Feng
    Han, Lei
    Jiang, Hai-Long
    Xu, Qiang
    SMALL METHODS, 2017, 1 (11):
  • [27] Correlated disorder in metal-organic frameworks
    Meekel, Emily G.
    Goodwin, Andrew L.
    CRYSTENGCOMM, 2021, 23 (16) : 2915 - 2922
  • [28] Conductive Metal-Organic Frameworks for Supercapacitors
    Niu, Liang
    Wu, Taizheng
    Chen, Ming
    Yang, Long
    Yang, Jingjing
    Wang, Zhenxiang
    Kornyshev, Alexei A.
    Jiang, Huili
    Bi, Sheng
    Feng, Guang
    ADVANCED MATERIALS, 2022, 34 (52)
  • [29] Hydrogen storage in metal-organic frameworks
    Murray, Leslie J.
    Dinca, Mircea
    Long, Jeffrey R.
    CHEMICAL SOCIETY REVIEWS, 2009, 38 (05) : 1294 - 1314
  • [30] Hydrogen Storage in Metal-Organic Frameworks
    Suh, Myunghyun Paik
    Park, Hye Jeong
    Prasad, Thazhe Kootteri
    Lim, Dae-Woon
    CHEMICAL REVIEWS, 2012, 112 (02) : 782 - 835