Directed evolution of cytochrome P450 enzymes for biocatalysis: exploiting the catalytic versatility of enzymes with relaxed substrate specificity

被引:58
作者
Behrendorff, James B. Y. H. [1 ]
Huang, Weiliang [2 ]
Gillam, Elizabeth M. J. [2 ]
机构
[1] Univ Queensland, Australian Inst Bioengn & Nanotechnol, Brisbane, Qld 4072, Australia
[2] Univ Queensland, Sch Chem & Mol Biosci, St Lucia, Qld 4072, Australia
关键词
biocatalysis; cytochrome P450; directed evolution; DNA shuffling; drug discovery; substrate ambiguity; ANTICANCER PRODRUGS CYCLOPHOSPHAMIDE; DRUG METABOLITE SYNTHESIS; X-RAY CRYSTALLOGRAPHY; IN-VITRO; ESCHERICHIA-COLI; COMPUTATIONAL DESIGN; LABORATORY EVOLUTION; STRUCTURAL INTEGRITY; FUNCTIONAL DIVERSITY; ALKANE HYDROXYLASE;
D O I
10.1042/BJ20141493
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cytochrome P450 enzymes are renowned for their ability to insert oxygen into an enormous variety of compounds with a high degree of chemo-and regio-selectivity under mild conditions. This property has been exploited in Nature for an enormous variety of physiological functions, and representatives of this ancient enzyme family have been identified in all kingdoms of life. The catalytic versatility of P450s makes them well suited for repurposing for the synthesis of fine chemicals such as drugs. Although these enzymes have not evolved in Nature to perform the reactions required for modern chemical industries, many P450s show relaxed substrate specificity and exhibit some degree of activity towards non-natural substrates of relevance to applications such as drug development. Directed evolution and other protein engineering methods can be used to improve upon this low level of activity and convert these promiscuous generalist enzymes into specialists capable of mediating reactions of interest with exquisite regio- and stereo-selectivity. Although there are some notable successes in exploiting P450s from natural sources in metabolic engineering, and P450s have been proven repeatedly to be excellent material for engineering, there are few examples to date of practical application of engineered P450s. The purpose of the present review is to illustrate the progress that has been made in altering properties of P450s such as substrate range, cofactor preference and stability, and outline some of the remaining challenges that must be overcome for industrial application of these powerful biocatalysts.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 147 条
[1]   High efficiency family shuffling based on multi-step PCR and in vivo DNA recombination in yeast: statistical and functional analysis of a combinatorial library between human cytochrome P450 1A1 and 1A2 [J].
Abecassis, Valerie ;
Pompon, Denis ;
Truan, Gilles .
NUCLEIC ACIDS RESEARCH, 2000, 28 (20) :E88
[2]   Hydroxylation of testosterone by bacterial cytochromes P450 using the Escherichia coli expression system [J].
Agematu, H ;
Matsumoto, N ;
Fujii, Y ;
Kabumoto, H ;
Doi, S ;
Machida, K ;
Ishikawa, J ;
Arisawa, A .
BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 2006, 70 (01) :307-311
[3]   The Moderately Efficient Enzyme: Evolutionary and Physicochemical Trends Shaping Enzyme Parameters [J].
Bar-Even, Arren ;
Noor, Elad ;
Savir, Yonatan ;
Liebermeister, Wolfram ;
Davidi, Dan ;
Tawfik, Dan S. ;
Milo, Ron .
BIOCHEMISTRY, 2011, 50 (21) :4402-4410
[4]   Directed Evolution Reveals Requisite Sequence Elements in the Functional Expression of P450 2F1 in Escherichia coli [J].
Behrendorff, James B. Y. H. ;
Moore, Chad D. ;
Kim, Keon-Hee ;
Kim, Dae-Hwan ;
Smith, Christopher A. ;
Johnston, Wayne A. ;
Yun, Chul-Ho ;
Yost, Garold S. ;
Gillam, Elizabeth M. J. .
CHEMICAL RESEARCH IN TOXICOLOGY, 2012, 25 (09) :1964-1974
[5]   Engineering cytochrome P450cam into an alkane hydroxylase [J].
Bell, SG ;
Orton, E ;
Boyd, H ;
Stevenson, JA ;
Riddle, A ;
Campbell, S ;
Wong, LL .
DALTON TRANSACTIONS, 2003, (11) :2133-2140
[6]  
BODDUPALLI SS, 1990, J BIOL CHEM, V265, P4233
[7]   Status of protein engineering for biocatalysts: how to design an industrially useful biocatalyst [J].
Bommarius, Andreas S. ;
Blum, Janna K. ;
Abrahamson, Michael J. .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2011, 15 (02) :194-200
[8]   Mechanistic aspects of CYP74 allene oxide synthases and related cytochrome P450 enzymes [J].
Brash, Alan R. .
PHYTOCHEMISTRY, 2009, 70 (13-14) :1522-1531
[9]   Luminogenic cytochrome P450 assays [J].
Cali, James J. ;
Ma, Dongping ;
Sobol, Mary ;
Simpson, Daniel J. ;
Frackman, Susan ;
Good, Troy I. ;
Daily, William J. ;
Liu, David .
EXPERT OPINION ON DRUG METABOLISM & TOXICOLOGY, 2006, 2 (04) :629-645
[10]   Identification of broad specificity P450CAM variants by primary screening against indole as substrate [J].
Çelik, A ;
Speight, RE ;
Turner, NJ .
CHEMICAL COMMUNICATIONS, 2005, (29) :3652-3654