ReMAE: User-Friendly Toolbox for Removing Muscle Artifacts From EEG

被引:31
|
作者
Chen, Xun [1 ,2 ]
Liu, Qingze [1 ,2 ]
Tao, Wei [3 ]
Li, Luchang [3 ]
Lee, Soojin [4 ]
Liu, Aiping [5 ,6 ]
Chen, Qiang [3 ,7 ]
Cheng, Juan [3 ]
McKeown, Martin J. [4 ]
Wang, Z. Jane [8 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Dept Elect Sci & Technol, Hefei 230026, Peoples R China
[3] Hefei Univ Technol, Dept Biomed Engn, Hefei 230009, Peoples R China
[4] Univ British Columbia, Dept Med Neurol, Pacific Parkinsons Res Ctr, Vancouver, BC, Canada
[5] Univ Sci & Technol China, Natl Engn Lab Brain Inspired Intelligence Technol, Hefei 230027, Peoples R China
[6] Univ Sci & Technol China, Dept Elect Sci & Technol, Hefei 230027, Peoples R China
[7] Univ North Texas, Dept Comp Sci & Engn, Denton, TX 76203 USA
[8] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V6T 1Z4, Canada
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Denoising; electroencephalogram (EEG); hybrid methods; muscle artifacts; toolbox; INDEPENDENT COMPONENT ANALYSIS; CANONICAL CORRELATION-ANALYSIS; EMPIRICAL-MODE DECOMPOSITION; WAVELET TRANSFORM; SOURCE SEPARATION; VECTOR ANALYSIS; FMRI DATA; SIGNALS; ICA; MULTICHANNEL;
D O I
10.1109/TIM.2019.2920186
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper describes a user-friendly toolbox, ReMAE, for removing muscle artifacts from electroencephalogram (EEG), running under the MATLAB environment. It implements a series of state-of-the-art methods for muscle artifact removal from EEG in the literature, and provides a graphical user interface (GUI). According to the taxonomy of the existing studies, this toolbox contains three denoising modes based on the number of input EEG channels, i.e., multi-channel, single-channel, and few-channel. Furthermore, this toolbox modularizes the denoising methods and visualizes each module. This means that users can readily observe the detailed denoising performance in each step, and even design a customized combined method in terms of their own understanding. In the current literature, there exists no method applicable for all situations due to the complexity of muscle artifacts. The main motivation of this work is to connect neuroscientists, psychologists, and clinicians with both the well-established and cutting-edge methods through a simple and intuitive GUI, and encourage them to extensively investigate different methods in a variety of real scenarios.
引用
收藏
页码:2105 / 2119
页数:15
相关论文
共 50 条
  • [1] EPAT: a user-friendly MATLAB toolbox for EEG/ERP data processing and analysis
    Shi, Jianwei
    Gong, Xun
    Song, Ziang
    Xie, Wenkai
    Yang, Yanfeng
    Sun, Xiangjie
    Wei, Penghu
    Wang, Changming
    Zhao, Guoguang
    FRONTIERS IN NEUROINFORMATICS, 2024, 18
  • [2] Brainstorm: A User-Friendly Application for MEG/EEG Analysis
    Tadel, Francois
    Baillet, Sylvain
    Mosher, John C.
    Pantazis, Dimitrios
    Leahy, Richard M.
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2011, 2011
  • [3] PC-ORD version 5: A user-friendly toolbox for ecologists
    Grandin, Ulf
    JOURNAL OF VEGETATION SCIENCE, 2006, 17 (06) : 843 - 844
  • [4] Applicability of the "Emotiv EEG Neuroheadset" as a User-friendly Input Interface
    Boutani, Hidenori
    Ohsuga, Mieko
    2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 1346 - 1349
  • [5] GraphVar 2.0: A user-friendly toolbox for machine learning on functional connectivity measures
    Waller, L.
    Brovkin, A.
    Dorfschmidt, L.
    Bzdok, D.
    Walter, H.
    Kruschwitz, J. D.
    JOURNAL OF NEUROSCIENCE METHODS, 2018, 308 : 21 - 33
  • [6] EEMlab: A graphical user-friendly interface for fluorimetry experiments based on the drEEM toolbox
    Mico, P.
    Garcia-Ballesteros, S.
    Mora, M.
    Vicente, R.
    Amat, A. M.
    Argues, A.
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2019, 188 : 6 - 13
  • [7] GraphVar: A user-friendly toolbox for comprehensive graph analyses of functional brain connectivity
    Kruschwitz, J. D.
    List, D.
    Waller, L.
    Rubinov, M.
    Walter, H.
    JOURNAL OF NEUROSCIENCE METHODS, 2015, 245 : 107 - 115
  • [8] Removing Muscle Artifacts From EEG Data: Multichannel or Single-Channel Techniques?
    Chen, Xun
    Liu, Aiping
    Chiang, Joyce
    Wang, Z. Jane
    McKeown, Martin J.
    Ward, Rabab K.
    IEEE SENSORS JOURNAL, 2016, 16 (07) : 1986 - 1997
  • [9] ElecFeX is a user-friendly toolbox for efficient feature extraction from single-cell electrophysiological recordings
    Ma, Xinyue
    Miraucourt, Lois S.
    Qiu, Haoyi
    Xu, Mengyi
    Cook, Erik P.
    Krishnaswamy, Arjun
    Sharif-Naeini, Reza
    Khadra, Anmar
    CELL REPORTS METHODS, 2024, 4 (06):
  • [10] User-friendly toolbox for batch processing within a UNIX® interactive display manager session
    Young, J
    PROCEEDINGS OF THE TWENTY-THIRD ANNUAL SAS USERS GROUP INTERNATIONAL CONFERENCE, 1998, : 134 - 137