Optimizing genetic algorithms using self-adaptation and explored space modelization

被引:0
作者
Martin, O [1 ]
Gras, R [1 ]
Hernandez, D [1 ]
Appel, RD [1 ]
机构
[1] CMU, Swiss Inst Bioinformat, CH-1211 Geneva 4, Switzerland
来源
PROCEEDINGS OF THE 7TH JOINT CONFERENCE ON INFORMATION SCIENCES | 2003年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes a new genetic algorithm (Highway) tailored to optimize the exploration/exploitation ratio, in order to limit premature convergence (local optima). This algorithm was compared with a classical genetic algorithm and with the Bayesian Optimization Algorithm (BOA, [6]) method on common test functions. It shows an improvement over both of them.
引用
收藏
页码:291 / 294
页数:4
相关论文
共 7 条
  • [1] [Anonymous], 1992, P PAR PROBL SOLV NAT
  • [2] [Anonymous], 1991, Handbook of genetic algorithms
  • [3] De Jong K. A., 1975, ANAL BEHAV CLASS GEN
  • [4] HERNANDEZ D, 2002, MODEL INFERENCE MOTI, P265
  • [5] Herrera F., 1996, GENETIC ALGORITHMS S
  • [6] SAGA: Sequence alignment by genetic algorithm
    Notredame, C
    Higgins, DG
    [J]. NUCLEIC ACIDS RESEARCH, 1996, 24 (08) : 1515 - 1524
  • [7] Pelikan M., 1999, P GEN EV COMP C GECC