Topological obstructions to fatness

被引:14
作者
Florit, Luis A. [1 ]
Ziller, Wolfgang
机构
[1] IMPA, BR-22460320 Rio De Janeiro, Brazil
基金
美国国家科学基金会;
关键词
POSITIVE CURVATURE; BUNDLES;
D O I
10.2140/gt.2011.15.891
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Alan Weinstein showed that certain characteristic numbers of any Riemannian submersion with totally geodesic fibers and positive vertizontal curvatures are nonzero. In this paper we explicitly compute these invariants in terms of Chern and Pontrjagin numbers of the bundle. This allows us to show that many bundles do not admit such metrics.
引用
收藏
页码:891 / 925
页数:35
相关论文
共 22 条
[1]  
B?rard-Bergery L., 1975, COMPOS MATH, V30, P43
[2]  
Besse A. L., 1987, ERGEBNISSE MATH IHRE, DOI [10.1007/978-3-540-74311-8, DOI 10.1007/978-3-540-74311-8]
[4]   A THEOREM OF FINITENESS FOR FAT BUNDLES [J].
CHAVES, LM .
TOPOLOGY, 1994, 33 (03) :493-497
[5]   UNFLAT CONNECTIONS IN 3-SPHERE BUNDLES OVER S4 [J].
DERDZINSKI, A ;
RIGAS, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 265 (02) :485-493
[6]   THE IMAGE OF H-STAR(BG,Z) IN H-STAR(BT,Z) FOR G A COMPACT LIE GROUP WITH MAXIMAL TORUS-T [J].
FESHBACH, M .
TOPOLOGY, 1981, 20 (01) :93-95
[7]   Orbifold fibrations of Eschenburg spaces [J].
Florit, Luis A. ;
Ziller, Wolfgang .
GEOMETRIAE DEDICATA, 2007, 127 (01) :159-175
[8]  
Fulton W., 1991, REPRESENTATION THEOR
[9]  
Gromoll D., 2009, Progress in Mathematics, V268
[10]  
Hatcher A., 2002, Algebraic topology