Experimental and numerical investigation of single-pass laser welding of 20 mm-thick high-strength steel under reduced ambient pressure

被引:23
作者
Jiang, Meng [1 ]
Jiang, Nan [1 ]
Chen, Xi [1 ]
Ma, Shengchong [1 ]
Chen, Yuan [1 ]
Chen, Yanbin [1 ]
Lei, Zhenglong [1 ]
机构
[1] Harbin Inst Technol, State Key Lab Adv Welding & Joining, Harbin 150001, Peoples R China
来源
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T | 2021年 / 15卷
基金
中国国家自然科学基金;
关键词
Single-pass laser welding; Ambient pressure; Weld geometry; Porosity; Microstructure; Heat transfer; HIGH-POWER; MECHANICAL-PROPERTIES; STAINLESS-STEEL; HEAT-TRANSFER; FLUID-FLOW; MICROSTRUCTURE; SIMULATION; ATMOSPHERE; GEOMETRY; PLATES;
D O I
10.1016/j.jmrt.2021.09.030
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The currently available high-power laser presents significant opportunities for welding of thick section components in single-pass. However, weld defects frequently occur and depth of penetration is usually lower than expected in this situation. In this work, a process of laser welding under reduced ambient pressure was investigated to achieve a single-pass complete-joint-penetration weld of 20 mm-thick high-strength steel. An experimental and theoretical program of investigation was undertaken to evaluate the characteristic of this welding process. The weld appearance, porosity inside the weld metal, microstructure and mechanical properties of weld joint were examined experimentally. The temperature field was calculated numerically using a 3D heat transfer and fluid flow model. A defect-free sound weld joint of 20 mm-thick plate was obtained just using an 8-kW laser power. The weld joint showed a very high aspect ratio characteristic of electron beam welding. From base metal (BM) to fusion zone (FZ) through heat-affected zone (HAZ), the microhardness varied significantly duo to their different microstructures resulted from the various peak temperatures and cooling rates for varying distances from weld center. All the tensile test samples fractured at the BM away from HAZ and FZ, which suggested that the welded metal was stronger than BM. The calculated weld geometry agreed with the corresponding experimental results through considering the role of ambient pressure. Their good agreement indicated the validity of the potential causative variables considered in the simulations. The modelling results also showed that the weld pool had a lower peak temperature and thinner liquid weld metal around keyhole under reduced ambient pressure. (c) 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:2317 / 2331
页数:15
相关论文
共 50 条
[1]   Through-thickness microstructure and mechanical properties of electron beam welded 20 mm thick AISI 316L austenitic stainless steel [J].
Alali, M. ;
Todd, I. ;
Wynne, B. P. .
MATERIALS & DESIGN, 2017, 130 :488-500
[2]  
[Anonymous], 2001, 90162001 ISO
[3]  
[Anonymous], 1996, 139191 ISO
[4]  
Arata Y., 1985, Trans JWRI, V14, P217, DOI DOI 10.18910/11323
[5]  
ASTM, 2009, Annu. Book ASTM Stand., DOI DOI 10.1520/E0008
[6]   Full penetration laser beam welding of thick duplex steel plates with electromagnetic weld pool support [J].
Avilov, Vjaceslav ;
Fritzsche, Andre ;
Bachmann, Marcel ;
Gumenyuk, Andrey ;
Rethmeier, Michael .
JOURNAL OF LASER APPLICATIONS, 2016, 28 (02)
[7]   Welding with high-power lasers: trends and developments [J].
Bachmann, M. ;
Gumenyuk, A. ;
Rethmeier, M. .
LASER ASSISTED NET SHAPE ENGINEERING 9 INTERNATIONAL CONFERENCE ON PHOTONIC TECHNOLOGIES PROCEEDINGS OF THE LANE 2016, 2016, 83 :15-25
[8]   Experimental and numerical investigation of an electromagnetic weld pool support system for high power laser beam welding of austenitic stainless steel [J].
Bachmann, Marcel ;
Avilov, Vjaceslav ;
Gumenyuk, Andrey ;
Rethmeier, Michael .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2014, 214 (03) :578-591
[9]   Numerical simulation of full-penetration laser beam welding of thick aluminium plates with inductive support [J].
Bachmann, Marcel ;
Avilov, Vjaceslav ;
Gumenyuk, Andrey ;
Rethmeier, Michael .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2012, 45 (03)
[10]  
Blecher JJ, 2015, WELD J, V94, p73S