Zonoids, linear dependence, and size-biased distributions on the simplex

被引:3
作者
Dall'aglio, M
Scarsini, M
机构
[1] Univ G DAnnunzio, Dipartimento Sci, I-65127 Pescara, Italy
[2] Univ Turin, Dipartimento Stat & Matemat Applicata, I-10122 Turin, Italy
关键词
zonoid; zonotope; linear dependence; compositional variables; multivariate size-biased distribution; concordance order; Marshall-Olkin distribution;
D O I
10.1239/aap/1067436324
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The zonoid of a d-dimensional random vector is used as a tool for measuring linear dependence among its components. A preorder of linear dependence is defined through inclusion of the zonoids. The zonoid of a random vector does not characterize its distribution, but it does characterize the size-biased distribution of its compositional variables. This fact will allow a characterization of our linear dependence order in terms of a linear-convex order for the size-biased compositional variables. In dimension 2 the linear dependence preorder will be shown to be weaker than the concordance order. Some examples related to the Marshall-Olkin distribution and to a copula model will be presented, and a class of measures of linear dependence will be proposed.
引用
收藏
页码:871 / 884
页数:14
相关论文
共 21 条
[1]  
[Anonymous], 2002, LECT NOTES STAT
[2]   A CLASS OF CONVEX BODIES [J].
BOLKER, ED .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 145 :323-&
[3]  
CHOQUET G, 1969, S MATH, V2, P145
[4]   When Lorenz met Lyapunov [J].
Dall'Aglio, M ;
Scarsini, M .
STATISTICS & PROBABILITY LETTERS, 2001, 54 (01) :101-105
[5]   FUSIONS OF A PROBABILITY-DISTRIBUTION [J].
ELTON, J ;
HILL, TP .
ANNALS OF PROBABILITY, 1992, 20 (01) :421-454
[6]  
GINI C, 1914, IST VENETO SCI LETT, V73, P185
[7]  
Goodey P., 1993, Handbook of Convex Geometry, P1297
[8]  
Joe H, 1997, MULTIVARIATE MODELS
[9]   POSITIVE DEPENDENCE ORDERINGS [J].
KIMELDORF, G ;
SAMPSON, AR .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1987, 39 (01) :113-128
[10]   Lift zonoids, random convex hulls and the variability of random vectors [J].
Koshevoy, G ;
Mosler, K .
BERNOULLI, 1998, 4 (03) :377-399