Audio classification systems using deep neural networks and an event-driven auditory sensor

被引:2
|
作者
Ceolini, Enea [1 ]
Kiselev, Ilya
Liu, Shih-Chii
机构
[1] Univ Zurich, Inst Neuroinformat, Zurich, Switzerland
来源
2019 IEEE SENSORS | 2019年
基金
瑞士国家科学基金会;
关键词
event-driven audio; edge computing; spiking cochlea; deep learning; sound classification; low-power cochlea; SILICON COCHLEA;
D O I
10.1109/sensors43011.2019.8956592
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We describe ongoing research in developing audio classification systems that use a spiking silicon cochlea as the front end. Event-driven features extracted from the spikes are fed to deep networks for the intended task. We describe a classification task on naturalistic audio sounds using a low-power silicon cochlea that outputs asynchronous events through a send-on-delta encoding of its sharply-tuned cochlea channels. Because of the event-driven nature of the processing, silences in these naturalistic sounds lead to corresponding absence of cochlea spikes and savings in computes. Results show 48% savings in computes with a small loss in accuracy using cochlea events.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Audio Event Classification Using Deep Neural Networks
    Kons, Zvi
    Toledo-Ronen, Orith
    14TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2013), VOLS 1-5, 2013, : 1481 - 1485
  • [2] Scene Context Classification with Event-Driven Spiking Deep Neural Networks
    Negri, Pablo
    Soto, Miguel
    Linares-Barranco, Bernabe
    Serrano-Gotarredona, Teresa
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS (ICECS), 2018, : 569 - 572
  • [3] Event-Driven Cooperative Identification for Nonlinear Systems Using Neural Networks
    Li, Jing
    Gao, Fei
    Chen, Weisheng
    Wu, Jian
    Yan, Rui
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 1702 - 1706
  • [4] Event-driven implementation of deep spiking convolutional neural networks for supervised classification using the SpiNNaker neuromorphic platform
    Patino-Saucedo, Alberto
    Rostro-Gonzalez, Horacio
    Serrano-Gotarredona, Teresa
    Linares-Barranco, Bernabe
    NEURAL NETWORKS, 2020, 121 : 319 - 328
  • [5] Event-Driven Deep Neural Network Hardware System for Sensor Fusion
    Kiselev, Ilya
    Neil, Daniel
    Liu, Shih-Chii
    2016 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2016, : 2495 - 2498
  • [6] An Efficient Event-driven Neuromorphic Architecture for Deep Spiking Neural Networks
    Duy-Anh Nguyen
    Duy-Hicu Bui
    Iacopi, Francesca
    Xuan-Tu Tran
    32ND IEEE INTERNATIONAL SYSTEM ON CHIP CONFERENCE (IEEE SOCC 2019), 2019, : 144 - 149
  • [7] Event-driven enhanced coverage for sensor networks
    Yang, Dazhi
    Wang, Dali
    Zhao, Jiying
    PROCEEDINGS OF THE SIXTH IASTED INTERNATIONAL MULTI-CONFERENCE ON WIRELESS AND OPTICAL COMMUNICATIONS, 2006, : 377 - +
  • [8] Stochastic Coverage in Event-Driven Sensor Networks
    She, Huimin
    Lu, Zhonghai
    Jantsch, Axel
    Zhou, Dian
    Zheng, Li-Rong
    2011 IEEE 22ND INTERNATIONAL SYMPOSIUM ON PERSONAL INDOOR AND MOBILE RADIO COMMUNICATIONS (PIMRC), 2011, : 915 - 919
  • [9] Computational event-driven vision sensors for in-sensor spiking neural networks
    Zhou, Yue
    Fu, Jiawei
    Chen, Zirui
    Zhuge, Fuwei
    Wang, Yasai
    Yan, Jianmin
    Ma, Sijie
    Xu, Lin
    Yuan, Huanmei
    Chan, Mansun
    Miao, Xiangshui
    He, Yuhui
    Chai, Yang
    NATURE ELECTRONICS, 2023, 6 (11) : 870 - 878
  • [10] Computational event-driven vision sensors for in-sensor spiking neural networks
    Yue Zhou
    Jiawei Fu
    Zirui Chen
    Fuwei Zhuge
    Yasai Wang
    Jianmin Yan
    Sijie Ma
    Lin Xu
    Huanmei Yuan
    Mansun Chan
    Xiangshui Miao
    Yuhui He
    Yang Chai
    Nature Electronics, 2023, 6 : 870 - 878