Stochastic bias correction of dynamically downscaled precipitation fields for Germany through Copula-based integration of gridded observation data

被引:63
作者
Mao, G. [1 ,2 ]
Vogl, S. [3 ]
Laux, P. [1 ]
Wagner, S. [1 ,2 ]
Kunstmann, H. [1 ,2 ]
机构
[1] KIT, Inst Meteorol & Climate Res IMK IFU, D-82467 Garmisch Partenkirchen, Germany
[2] Univ Augsburg, Inst Geog, D-86159 Augsburg, Germany
[3] Siemens AG, Corp Technol, D-81739 Munich, Germany
关键词
REGIONAL CLIMATE MODEL; CHANGE IMPACT; SIMULATIONS; HYDROLOGY; INFORMATION; ENSEMBLE; RAINFALL; SCALE;
D O I
10.5194/hess-19-1787-2015
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Dynamically downscaled precipitation fields from regional climate models (RCMs) often cannot be used directly for regional climate studies. Due to their inherent biases, i.e., systematic over- or underestimations compared to observations, several correction approaches have been developed. Most of the bias correction procedures such as the quantile mapping approach employ a transfer function that is based on the statistical differences between RCM output and observations. Apart from such transfer function-based statistical correction algorithms, a stochastic bias correction technique, based on the concept of Copula theory, is developed here and applied to correct precipitation fields from the Weather Research and Forecasting (WRF) model. For dynamically downscaled precipitation fields we used high-resolution (7 km, daily) WRF simulations for Germany driven by ERA40 reanalysis data for 1971-2000. The REGNIE (REGionalisierung der NIEderschlagshohen) data set from the German Weather Service (DWD) is used as gridded observation data (1 km, daily) and aggregated to 7 km for this application. The 30-year time series are split into a calibration (1971-1985) and validation (1986-2000) period of equal length. Based on the estimated dependence structure (described by the Copula function) between WRF and REGNIE data and the identified respective marginal distributions in the calibration period, separately analyzed for the different seasons, conditional distribution functions are derived for each time step in the validation period. This finally allows to get additional information about the range of the statistically possible bias-corrected values. The results show that the Copula-based approach efficiently corrects most of the errors in WRF derived precipitation for all seasons. It is also found that the Copula-based correction performs better for wet bias correction than for dry bias correction. In autumn and winter, the correction introduced a small dry bias in the northwest of Germany. The average relative bias of daily mean precipitation from WRF for the validation period is reduced from 10% (wet bias) to -1% (slight dry bias) after the application of the Copula-based correction. The bias in different seasons is corrected from 32% March-April-May (MAM), 15% June-July-August (JJA), 4% September-October-November (SON) and 28% December-January-February (DJF) to 16% (MAM), -11% (JJA), -1% (SON) and -3% (DJF), respectively. Finally, the Copula-based approach is compared to the quantile mapping correction method. The root mean square error (RMSE) and the percentage of the corrected time steps that are closer to the observations are analyzed. The Copula-based correction derived from the mean of the sampled distribution reduces the RMSE significantly, while, e.g., the quantile mapping method results in an increased RMSE for some regions.
引用
收藏
页码:1787 / 1806
页数:20
相关论文
共 43 条
[1]  
[Anonymous], 459 NCAR
[2]   Assessing uncertainties in crop model simulations using daily bias-corrected Regional Circulation Model outputs [J].
Baigorria, Guillermo A. ;
Jones, James W. ;
Shin, Dong-Wook ;
Mishra, Ashok ;
O'Brien, James J. .
CLIMATE RESEARCH, 2007, 34 (03) :211-222
[3]   Copula based multisite model for daily precipitation simulation [J].
Bardossy, A. ;
Pegram, G. G. S. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2009, 13 (12) :2299-2314
[4]   Multiscale spatial recorrelation of RCM precipitation to produce unbiased climate change scenarios over large areas and small [J].
Bardossy, Andres ;
Pegram, Geoffrey .
WATER RESOURCES RESEARCH, 2012, 48
[5]   High resolution regional climate model simulations for Germany: part I-validation [J].
Berg, Peter ;
Wagner, Sven ;
Kunstmann, Harald ;
Schaedler, Gerd .
CLIMATE DYNAMICS, 2013, 40 (1-2) :401-414
[6]   Climate change impacts on runoff in Sweden -: assessments by global climate models, dynamical downscaling and hydrological modelling [J].
Bergström, S ;
Carlsson, B ;
Gardelin, M ;
Lindström, G ;
Pettersson, A ;
Rummukainen, M .
CLIMATE RESEARCH, 2001, 16 (02) :101-112
[7]   On the need for bias correction of regional climate change projections of temperature and precipitation [J].
Christensen, Jens H. ;
Boberg, Fredrik ;
Christensen, Ole B. ;
Lucas-Picher, Philippe .
GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (20)
[8]  
Deheuvels P., 1979, Bulletins de l'Academie Royale de Belgique, V65, P274, DOI [10.3406/barb.1979.58521, DOI 10.3406/BARB.1979.58521]
[9]  
Dieterichs H., 1956, Geofisica pura e applicata, V33, P267
[10]   Bias correction of the ENSEMBLES high-resolution climate change projections for use by impact models: Evaluation on the present climate [J].
Dosio, A. ;
Paruolo, P. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2011, 116