Study of nanocrystalline TiN/Si3N4 thin films deposited using a dual ion beam method

被引:35
作者
Colligon, JS
Vishnyakov, V [1 ]
Valizadeh, R
Donnelly, SE
Kumashiro, S
机构
[1] Manchester Metropolitan Univ, Dalton Res Inst, Manchester M1 5GD, Lancs, England
[2] Univ Salford, Joule Phys Lab, Inst Mat Res, Salford M5 4WT, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
hardness; ion bombardment; nanostructures; physical vapour deposition; silicon nitride; titanium nitride;
D O I
10.1016/j.tsf.2005.03.036
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A dual ion beam system is used to produce hard nanocomposite TiN/Si3N4 coatings on Si. Cross-sectional high resolution transmission electron microscopy analysis of the coatings shows that ion assistance causes microstructure to change from the non-assisted columnar form to one where there are small crystals present in an amorphous percolation network. For an unheated Si substrate, the microhardness increases with increasing ion-assist energy from 24 to 29 GPa, whereas for a deposition substrate at 400 degrees C, the microhardness values are 7-8 GPa or higher. The value of microhardness does not change even when coatings are annealed in vacuum at 1000 degrees C, showing that these coatings have high thermal stability. X-ray photoelectron spectroscopy data indicate that the -Ti-N-Si- bonds expected when the percolation network is formed are present only for substrate temperatures Above 600 degrees C and that Ti-Si bonds form at lower temperature and during excess ion bombardment. V (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:148 / 154
页数:7
相关论文
共 50 条
  • [21] Obtaining Ceramic Based on Si3N4 and TiN by Spark Plasma Sintering
    Evdokimov, A. A.
    Sivkov, A. A.
    Gerasimov, D. Yu.
    GLASS AND CERAMICS, 2016, 72 (9-10) : 381 - 386
  • [22] Microstructure, fracture behavior and mechanical properties of TiN/Si3N4 composites
    Huang, JL
    Lee, MT
    Lu, HH
    Lii, DF
    MATERIALS CHEMISTRY AND PHYSICS, 1996, 45 (03) : 203 - 210
  • [23] Obtaining Ceramic Based on Si3N4 and TiN by Spark Plasma Sintering
    A. A. Evdokimov
    A. A. Sivkov
    D. Yu. Gerasimov
    Glass and Ceramics, 2016, 72 : 381 - 386
  • [24] The Si3N4/TiN Interface: 2. Si3N4/TiN(001) Grown with a 27 V Substrate Bias and Analyzed In situ using Angle-resolved X-ray Photoelectron Spectroscopy
    Haasch, Richard T.
    Patscheider, Joerg
    Hellgren, Niklas
    Petrov, Ivan
    Greene, J. E.
    SURFACE SCIENCE SPECTRA, 2012, 19 (01): : 42 - 51
  • [25] Characterization of the Si3N4/Si3N4 joints fabricated using particles modified braze
    He, Yanming
    Zhang, Jie
    Li, Xiaodong
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 616 : 107 - 115
  • [26] Analysis of defect formation in Si3N4 films
    A. P. Garshin
    V. E. Shvaiko-Shvaikovskii
    V. L. Ugolkov
    Inorganic Materials, 2000, 36 : 162 - 166
  • [27] Growth of Si3N4 Thin Films on Si(111) Surface by RF-N2 Plasma Nitriding
    Chen, Wei-Chun
    Chen, Sheng
    Yu, Tung-Yuan
    Su, James
    Chen, Hung-Pin
    Lin, Yu-Wei
    Cheng, Chin-Pao
    COATINGS, 2021, 11 (01)
  • [28] Processing and mechanical properties of Si3N4/SiC nanocomposites using Si nitrided Si3N4 powder
    Yang, JF
    Sekino, T
    Choa, YH
    Niihara, K
    MATERIALS SCIENCE RESEARCH INTERNATIONAL, 1999, 5 (02): : 84 - 89
  • [29] Effect of the electrical discharge machining on strength and reliability of TiN/Si3N4 composites
    Liu, CC
    Huang, JL
    CERAMICS INTERNATIONAL, 2003, 29 (06) : 679 - 687
  • [30] Study of deposition parameters of reactive-sputtered Si3N4 thin films by optical emission spectroscopy
    Rodriguez-Lopez, R.
    Soto-Valle, G.
    Sangines, R.
    Abundiz-Cisneros, N.
    Aguila-Munoz, J.
    Cruz, J.
    Machorro-Mejia, R.
    THIN SOLID FILMS, 2022, 754