Bounds for attractors and the existence of homoclinic orbits in the Lorenz system

被引:104
作者
Leonov, GA
机构
来源
PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS | 2001年 / 65卷 / 01期
关键词
D O I
10.1016/S0021-8928(01)00004-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Frequency estimates are derived for the Lyapunov dimension of attractors of non-linear dynamical systems. A theorem on the localization of global attractors is proved for the Lorenz system. This theorem is applied to obtain upper bounds for the Lyapunov dimension of attractors and to prove the existence of homoclinic orbits in the Lorenz system. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:19 / 32
页数:14
相关论文
共 23 条
[1]  
[Anonymous], 1988, APPL MATH SCI
[2]  
[Anonymous], STOCHASTIC CHAOTIC O
[3]  
BIOCHENKO VA, 1998, J ANAL APPL, V17, P207
[4]   Lorenz equations .1. Existence and nonexistence of homoclinic orbits [J].
Chen, XF .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (04) :1057-1069
[5]  
Demidovich, 1967, Lectures on the mathematical stability theory
[6]  
DOUADY A, 1980, CR ACAD SCI PARIS A, V24, P1135
[7]  
EDEN A, 1989, RAIRO-MATH MODEL NUM, V23, P405
[8]  
Eden A., 1991, J. Dyn. Differ. Equ, V3, P133
[9]  
Gelig AKh., 1978, Stability of Nonlinear Systems with Non-Unique Equilibrium State
[10]  
Hartman P, 1964, ORDINARY DIFFERENTIA