A comparison of delayed SIR and SEIR epidemic models

被引:49
作者
Kaddar, Abdelilah [1 ]
Abta, Abdelhadi [2 ]
Alaoui, Hamad Talibi [2 ]
机构
[1] Univ Mohammed V Souissi, Fac Sci Jurid Econ & Sociales Sale, Souissi, Morocco
[2] Univ Chouaib Doukkali, Fac Sci, Dept Math & Informat, El Jadida, Morocco
来源
NONLINEAR ANALYSIS-MODELLING AND CONTROL | 2011年 / 16卷 / 02期
关键词
SIR epidemic model; incidence rate; delayed differential equations; SEIR model; delayed SIR model; incubation period; stability; Hopf bifurcation; periodic solutions; PULSE VACCINATION; STABILITY;
D O I
10.15388/NA.16.2.14104
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In epidemiological research literatures, a latent or incubation period can be medelled by incorporating it as a delay effect (delayed SIR models), or by introducing an exposed class (SEIR models). In this paper we propose a comparison of a delayed SIR model and its corresponding SEIR model in terms of local stability. Also some numerical simulations are given to illustrate the theoretical results.
引用
收藏
页码:181 / 190
页数:10
相关论文
共 22 条
[1]   REGULATION AND STABILITY OF HOST-PARASITE POPULATION INTERACTIONS .1. REGULATORY PROCESSES [J].
ANDERSON, RM ;
MAY, RM .
JOURNAL OF ANIMAL ECOLOGY, 1978, 47 (01) :219-247
[2]  
Chen L. S., 1993, Nonlinear Biological Dynamical System
[3]  
Cooke K.L., 1979, The Rocky Mountain Journal of Mathematics, V9, P31, DOI [DOI 10.1216/RMJ-1979-9-1-31, 10.1216/RMJ-1979-9-1-31]
[4]   DISCRETE DELAY, DISTRIBUTED DELAY AND STABILITY SWITCHES [J].
COOKE, KL ;
GROSSMAN, Z .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1982, 86 (02) :592-627
[5]  
Diekmann O., 2000, Mathematical epidemiology of infectious diseases: model building, analysis and interpretation
[6]  
Dieudonn J., 1960, Foundations of Modern Analysis
[7]   Analysis of a delayed epidemic model with pulse vaccination and saturation incidence [J].
Gao, Shujing ;
Chen, Lansun ;
Nieto, Juan J. ;
Torres, Angela .
VACCINE, 2006, 24 (35-36) :6037-6045
[8]   The reinfection threshold [J].
Gomes, MGM ;
White, LJ ;
Medley, GF .
JOURNAL OF THEORETICAL BIOLOGY, 2005, 236 (01) :111-113
[9]  
Hale J., 1993, INTRO FUNCTIONAL DIF, DOI [10.1007/978-1-4612-4342-7, DOI 10.1007/978-1-4612-4342-7]
[10]  
Hethcote H.W., 1981, Differential Equations and Applications in Ecology, Epidemics and Population Problems, Claremont Conference Proceedings, P65