Hypothesis testing for Markov chain Monte Carlo

被引:2
作者
Gyori, Benjamin M. [1 ]
Paulin, Daniel [2 ]
机构
[1] Harvard Med Sch, Dept Syst Biol, Boston, MA USA
[2] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore, Singapore
关键词
MCMC; Hypothesis test; Dynamical systems; ODE models; SEQUENTIAL-TESTS;
D O I
10.1007/s11222-015-9594-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Testing between hypotheses, when independent sampling is possible, is a well developed subject. In this paper, we propose hypothesis tests that are applicable when the samples are obtained using Markov chain Monte Carlo. These tests are useful when one is interested in deciding whether the expected value of a certain quantity is above or below a given threshold. We show non-asymptotic error bounds and bounds on the expected number of samples for three types of tests, a fixed sample size test, a sequential test with indifference region, and a sequential test without indifference region. Our tests can lead to significant savings in sample size. We illustrate our results on an example of Bayesian parameter inference involving an ODE model of a biochemical pathway.
引用
收藏
页码:1281 / 1292
页数:12
相关论文
共 50 条
[41]   Bayesian penalized empirical likelihood and Markov Chain Monte Carlo sampling [J].
Chang, Jinyuan ;
Tang, Cheng Yong ;
Zhu, Yuanzheng .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2025,
[42]   Fast Markov chain Monte Carlo algorithms via Lie groups [J].
Huntsman, Steve .
INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 :2841-2850
[43]   de Finetti Priors using Markov chain Monte Carlo computations [J].
Bacallado, Sergio ;
Diaconis, Persi ;
Holmes, Susan .
STATISTICS AND COMPUTING, 2015, 25 (04) :797-808
[44]   Bayesian analysis of nested logit model by Markov chain Monte Carlo [J].
Lahiri, K ;
Gao, J .
JOURNAL OF ECONOMETRICS, 2002, 111 (01) :103-133
[45]   Path Space Markov Chain Monte Carlo Methods in Computer Graphics [J].
Jakob, Wenzel .
MONTE CARLO AND QUASI-MONTE CARLO METHODS, 2016, 163 :107-141
[46]   sgmcmc: An R Package for Stochastic Gradient Markov Chain Monte Carlo [J].
Baker, Jack ;
Fearnhead, Paul ;
Fox, Emily B. ;
Nemeth, Christopher .
JOURNAL OF STATISTICAL SOFTWARE, 2019, 91 (03) :1-27
[47]   Markov Chain Monte Carlo Methods for Fluid Flow Forecasting in the Subsurface [J].
Ali, Alsadig ;
Al-Mamun, Abdullah ;
Pereira, Felipe ;
Rahunanthan, Arunasalam .
COMPUTATIONAL SCIENCE - ICCS 2020, PT VII, 2020, 12143 :757-771
[48]   MC3A: Markov Chain Monte Carlo ManyCore Accelerator [J].
Marni, Lahir ;
Hosseini, Morteza ;
Mohsenin, Tinoosh .
PROCEEDINGS OF THE 2018 GREAT LAKES SYMPOSIUM ON VLSI (GLSVLSI'18), 2018, :165-170
[49]   A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis [J].
Edwards, Michael C. .
PSYCHOMETRIKA, 2010, 75 (03) :474-497
[50]   Improving Operational Intensity in Data Bound Markov Chain Monte Carlo [J].
Nemeth, Balazs ;
Haber, Tom ;
Ashby, Thomas J. ;
Lamotte, Wim .
INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE (ICCS 2017), 2017, 108 :2348-2352