Hypothesis testing for Markov chain Monte Carlo

被引:2
作者
Gyori, Benjamin M. [1 ]
Paulin, Daniel [2 ]
机构
[1] Harvard Med Sch, Dept Syst Biol, Boston, MA USA
[2] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore, Singapore
关键词
MCMC; Hypothesis test; Dynamical systems; ODE models; SEQUENTIAL-TESTS;
D O I
10.1007/s11222-015-9594-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Testing between hypotheses, when independent sampling is possible, is a well developed subject. In this paper, we propose hypothesis tests that are applicable when the samples are obtained using Markov chain Monte Carlo. These tests are useful when one is interested in deciding whether the expected value of a certain quantity is above or below a given threshold. We show non-asymptotic error bounds and bounds on the expected number of samples for three types of tests, a fixed sample size test, a sequential test with indifference region, and a sequential test without indifference region. Our tests can lead to significant savings in sample size. We illustrate our results on an example of Bayesian parameter inference involving an ODE model of a biochemical pathway.
引用
收藏
页码:1281 / 1292
页数:12
相关论文
共 50 条
[31]   Most Likely Optimal Subsampled Markov Chain Monte Carlo [J].
Guanyu Hu ;
Haiying Wang .
Journal of Systems Science and Complexity, 2021, 34 :1121-1134
[32]   A simple introduction to Markov Chain Monte-Carlo sampling [J].
van Ravenzwaaij, Don ;
Cassey, Pete ;
Brown, Scott D. .
PSYCHONOMIC BULLETIN & REVIEW, 2018, 25 (01) :143-154
[33]   Markov chain Monte Carlo for incomplete information discrete games [J].
Sanjog Misra .
Quantitative Marketing and Economics, 2013, 11 :117-153
[34]   Markov chain Monte Carlo with the Integrated Nested Laplace Approximation [J].
Virgilio Gómez-Rubio ;
Håvard Rue .
Statistics and Computing, 2018, 28 :1033-1051
[35]   A Markov chain Monte Carlo approach to closing the loop in SLAM [J].
Kaess, M ;
Dellaert, F .
2005 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), VOLS 1-4, 2005, :643-648
[36]   Markov chain Monte Carlo for incomplete information discrete games [J].
Misra, Sanjog .
QME-QUANTITATIVE MARKETING AND ECONOMICS, 2013, 11 (01) :117-153
[37]   Markov chain Monte Carlo with the Integrated Nested Laplace Approximation [J].
Gomez-Rubio, Virgilio ;
Rue, Havard .
STATISTICS AND COMPUTING, 2018, 28 (05) :1033-1051
[38]   Most Likely Optimal Subsampled Markov Chain Monte Carlo [J].
Hu, Guanyu ;
Wang, Haiying .
JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2021, 34 (03) :1121-1134
[39]   Model choice using reversible jump Markov chain Monte Carlo [J].
Hastie, David I. ;
Green, Peter J. .
STATISTICA NEERLANDICA, 2012, 66 (03) :309-338
[40]   Automated Parameter Blocking for Efficient Markov Chain Monte Carlo Sampling [J].
Turek, Daniel ;
de Valpine, Perry ;
Paciorek, Christopher J. ;
Anderson-Bergman, Clifford .
BAYESIAN ANALYSIS, 2017, 12 (02) :465-490