CENTRIST: A Visual Descriptor for Scene Categorization

被引:494
|
作者
Wu, Jianxin [1 ]
Rehg, James M. [2 ,3 ,4 ,5 ]
机构
[1] Nanyang Technol Univ, Sch Comp Engn, Singapore, Singapore
[2] Georgia Inst Technol, Sch Interact Comp, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Ctr Robot & Intelligent Machines, Atlanta, GA 30332 USA
[4] Georgia Inst Technol, Ctr Behav Imaging, Atlanta, GA 30332 USA
[5] Georgia Inst Technol, Computat Percept Lab, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Place recognition; scene recognition; visual descriptor; Census Transform; SIFT; Gist; SIMULTANEOUS LOCALIZATION; CLASSIFICATION; SHAPE;
D O I
10.1109/TPAMI.2010.224
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
CENsus TRansform hISTogram (CENTRIST), a new visual descriptor for recognizing topological places or scene categories, is introduced in this paper. We show that place and scene recognition, especially for indoor environments, require its visual descriptor to possess properties that are different from other vision domains (e.g., object recognition). CENTRIST satisfies these properties and suits the place and scene recognition task. It is a holistic representation and has strong generalizability for category recognition. CENTRIST mainly encodes the structural properties within an image and suppresses detailed textural information. Our experiments demonstrate that CENTRIST outperforms the current state of the art in several place and scene recognition data sets, compared with other descriptors such as SIFT and Gist. Besides, it is easy to implement and evaluates extremely fast.
引用
收藏
页码:1489 / 1501
页数:13
相关论文
共 50 条
  • [41] CATEGORIZATION OF SIMILAR OBJECTS USING BAG OF VISUAL WORDS AND SUPPORT VECTOR MACHINES
    Gorecki, Przemyslaw
    Artiemjew, Piotr
    Drozda, Pawel
    Sopyla, Krzysztof
    ICAART: PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE, VOL 1, 2012, : 231 - 236
  • [42] Visual Place Categorization: Problem, Dataset, and Algorithm
    Wu, Jianxin
    Christensen, Henrik I.
    Rehg, James M.
    2009 IEEE-RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2009, : 4763 - 4770
  • [43] Heterogeneous Visual Codebook Integration via Consensus Clustering for Visual Categorization
    Lopez-Sastre, Roberto. J.
    Renes-Olalla, Javier
    Gil-Jimenez, Pedro
    Maldonado-Bascon, Saturnino
    Lafuente-Arroyo, Sergio
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2013, 23 (08) : 1358 - 1368
  • [44] mCENTRIST: A Multi-Channel Feature Generation Mechanism for Scene Categorization
    Xiao, Yang
    Wu, Jianxin
    Yuan, Junsong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (02) : 823 - 836
  • [45] Visual Object Categorization via Sparse Representation
    Fu, Huanzhang
    Zhu, Chao
    Dellandrea, Emmanuel
    Bichot, Charles-Edmond
    Chen, Liming
    PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON IMAGE AND GRAPHICS (ICIG 2009), 2009, : 943 - 948
  • [46] Scene recognition by semantic visual words
    Elahe Farahzadeh
    Tat-Jen Cham
    Andrzej Sluzek
    Signal, Image and Video Processing, 2015, 9 : 1935 - 1944
  • [47] Scene recognition by semantic visual words
    Farahzadeh, Elahe
    Cham, Tat-Jen
    Sluzek, Andrzej
    SIGNAL IMAGE AND VIDEO PROCESSING, 2015, 9 (08) : 1935 - 1944
  • [48] Low-dimension local descriptor for dense stereo matching and scene reconstruction
    Zhang, Chao
    Xue, Bindang
    Zhou, Fugen
    OPTICAL ENGINEERING, 2017, 56 (08)
  • [49] GPCA-SIFT: A New Local Feature Descriptor for Scene Image Classification
    Ju, Lei
    Xie, Ke
    Zheng, Hao
    Zhang, Baochang
    Yang, Wankou
    PATTERN RECOGNITION (CCPR 2016), PT II, 2016, 663 : 286 - 295
  • [50] Multilinear Supervised Neighborhood Embedding of a Local Descriptor Tensor for Scene/Object Recognition
    Han, Xian-Hua
    Chen, Yen-Wei
    Ruan, Xiang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (03) : 1314 - 1326