CENTRIST: A Visual Descriptor for Scene Categorization

被引:494
|
作者
Wu, Jianxin [1 ]
Rehg, James M. [2 ,3 ,4 ,5 ]
机构
[1] Nanyang Technol Univ, Sch Comp Engn, Singapore, Singapore
[2] Georgia Inst Technol, Sch Interact Comp, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Ctr Robot & Intelligent Machines, Atlanta, GA 30332 USA
[4] Georgia Inst Technol, Ctr Behav Imaging, Atlanta, GA 30332 USA
[5] Georgia Inst Technol, Computat Percept Lab, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Place recognition; scene recognition; visual descriptor; Census Transform; SIFT; Gist; SIMULTANEOUS LOCALIZATION; CLASSIFICATION; SHAPE;
D O I
10.1109/TPAMI.2010.224
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
CENsus TRansform hISTogram (CENTRIST), a new visual descriptor for recognizing topological places or scene categories, is introduced in this paper. We show that place and scene recognition, especially for indoor environments, require its visual descriptor to possess properties that are different from other vision domains (e.g., object recognition). CENTRIST satisfies these properties and suits the place and scene recognition task. It is a holistic representation and has strong generalizability for category recognition. CENTRIST mainly encodes the structural properties within an image and suppresses detailed textural information. Our experiments demonstrate that CENTRIST outperforms the current state of the art in several place and scene recognition data sets, compared with other descriptors such as SIFT and Gist. Besides, it is easy to implement and evaluates extremely fast.
引用
收藏
页码:1489 / 1501
页数:13
相关论文
共 50 条
  • [31] Invariant Deep Compressible Covariance Pooling for Aerial Scene Categorization
    Wang, Shidong
    Ren, Yi
    Parr, Gerard
    Guan, Yu
    Shao, Ling
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (08): : 6549 - 6561
  • [32] Scene Categorization Through Combining LBP and SIFT Features Effectively
    Bai, Shung
    Hou, Jianjun
    Ohnishi, Noboru
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2016, 30 (01)
  • [33] Hierarchical Metric Learning for Optical Remote Sensing Scene Categorization
    Goel, Akashdeep
    Banerjee, Biplab
    Pizurica, Aleksandra
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (06) : 952 - 956
  • [34] Accelerated Feature Extraction and Refinement for Improved Aerial Scene Categorization
    Tu, Xiaohan
    Yang, Laurence Tianruo
    Liu, Siping
    Li, Renfa
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 17
  • [35] Regularized discriminant embedding for visual descriptor learning
    Kim, Kye-Hyeon
    Cai, Rui
    Zhang, Lei
    Choi, Seungjin
    NEUROCOMPUTING, 2015, 149 : 1048 - 1057
  • [36] Hierarchical ELM ensembles for visual descriptor fusion
    Cvetkovic, Stevica
    Stojanovic, Milos B.
    Nikolic, Sasa V.
    INFORMATION FUSION, 2018, 41 : 16 - 24
  • [37] VISUAL OBJECT RECOGNITION USING DAISY DESCRIPTOR
    Zhu, Chao
    Bichot, Charles-Edmond
    Chen, Liming
    2011 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2011,
  • [38] Recognizing in the depth: Selective 3D Spatial Pyramid Matching Kernel for object and scene categorization
    Redondo-Cabrera, Carolina
    Lopez-Sastre, Roberto J.
    Acevedo-Rodriguez, Javier
    Maldonado-Bascon, Saturnino
    IMAGE AND VISION COMPUTING, 2014, 32 (12) : 965 - 978
  • [39] Combining MSCR Detector and PCA-SIFT Descriptor for Scene Recognition
    Shi Dong-cheng
    Yan Guo-qing
    2ND IEEE INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER CONTROL (ICACC 2010), VOL. 2, 2010, : 136 - 141
  • [40] Hierarchical deep semantic representation for visual categorization
    Zhang, Chunjie
    Li, Ruiying
    Huang, Qingming
    Tian, Qi
    NEUROCOMPUTING, 2017, 257 : 88 - 96