Coupled Discrete Fractional-Order Logistic Maps

被引:8
|
作者
Danca, Marius-F [1 ]
Feckan, Michal [2 ,3 ]
Kuznetsov, Nikolay [4 ,5 ]
Chen, Guanrong [6 ]
机构
[1] Romanian Inst Sci & Technol, Cluj Napoca 400504, Romania
[2] Comenius Univ, Fac Math Phys & Informat, Bratislava 84215, Slovakia
[3] Slovak Acad Sci, Math Inst, Bratislava 84104, Slovakia
[4] St Petersburg State Univ, Math & Mech Fac, St Petersburg 199034, Russia
[5] Univ Jyvaskyla, Dept Math Informat Technol, Jyvaskyla 40014, Finland
[6] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Peoples R China
基金
俄罗斯科学基金会;
关键词
discrete fractional-order system; caputo delta fractional difference; fractional-order difference equation; stability; hidden attractor; PERIODIC-SOLUTIONS; APPROXIMATION APPROACH; CHAOTIC ATTRACTORS; HIDDEN ATTRACTORS; DIFFERENCE; STABILITY; NONEXISTENCE; OSCILLATIONS; EXISTENCE; SYSTEMS;
D O I
10.3390/math9182204
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies a system of coupled discrete fractional-order logistic maps, modeled by Caputo's delta fractional difference, regarding its numerical integration and chaotic dynamics. Some interesting new dynamical properties and unusual phenomena from this coupled chaotic-map system are revealed. Moreover, the coexistence of attractors, a necessary ingredient of the existence of hidden attractors, is proved and analyzed.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Global Dynamics of Fractional-Order Discrete Maps
    Liu, Xiaojun
    Hong, Ling
    Tang, Dafeng
    FRACTAL AND FRACTIONAL, 2023, 7 (09)
  • [2] Hidden attractors in fractional-order discrete maps
    Varshney, Vaibhav
    Kingston, S. Leo
    Srinivasan, Sabarathinam
    Kumarasamy, Suresh
    EUROPEAN PHYSICAL JOURNAL B, 2024, 97 (10):
  • [3] Synchronization in coupled integer and fractional-order maps
    Pakhare, Sumit S.
    Bhalekar, Sachin
    Gade, Prashant M.
    CHAOS SOLITONS & FRACTALS, 2022, 156
  • [4] Bifurcation and chaos of a new discrete fractional-order logistic map
    Ji, YuanDong
    Lai, Li
    Zhong, SuChuan
    Zhang, Lu
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 57 : 352 - 358
  • [5] On the fractional-order logistic equation
    El-Sayed, A. M. A.
    El-Mesiry, A. E. M.
    El-Saka, H. A. A.
    APPLIED MATHEMATICS LETTERS, 2007, 20 (07) : 817 - 823
  • [6] Coupled Fractional-Order Systems with Nonlocal Coupled Integral and Discrete Boundary Conditions
    Alsaedi, Ahmed
    Ntouyas, Sotiris K.
    Garout, Doa'a
    Ahmad, Bashir
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (01) : 241 - 266
  • [7] Coupled Fractional-Order Systems with Nonlocal Coupled Integral and Discrete Boundary Conditions
    Ahmed Alsaedi
    Sotiris K. Ntouyas
    Doa’a Garout
    Bashir Ahmad
    Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 : 241 - 266
  • [8] Dynamics and synchronization of fractional-order Rulkov neuron coupled with discrete fracmemristor
    Tang, Zhouqing
    Wang, Huihai
    Zhu, Wanting
    Sun, Kehui
    CHAOS SOLITONS & FRACTALS, 2025, 192
  • [9] Discrete chaos in fractional delayed logistic maps
    Guo-Cheng Wu
    Dumitru Baleanu
    Nonlinear Dynamics, 2015, 80 : 1697 - 1703
  • [10] Discrete chaos in fractional delayed logistic maps
    Wu, Guo-Cheng
    Baleanu, Dumitru
    NONLINEAR DYNAMICS, 2015, 80 (04) : 1697 - 1703