Coupled Discrete Fractional-Order Logistic Maps

被引:8
作者
Danca, Marius-F [1 ]
Feckan, Michal [2 ,3 ]
Kuznetsov, Nikolay [4 ,5 ]
Chen, Guanrong [6 ]
机构
[1] Romanian Inst Sci & Technol, Cluj Napoca 400504, Romania
[2] Comenius Univ, Fac Math Phys & Informat, Bratislava 84215, Slovakia
[3] Slovak Acad Sci, Math Inst, Bratislava 84104, Slovakia
[4] St Petersburg State Univ, Math & Mech Fac, St Petersburg 199034, Russia
[5] Univ Jyvaskyla, Dept Math Informat Technol, Jyvaskyla 40014, Finland
[6] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Peoples R China
基金
俄罗斯科学基金会;
关键词
discrete fractional-order system; caputo delta fractional difference; fractional-order difference equation; stability; hidden attractor; PERIODIC-SOLUTIONS; APPROXIMATION APPROACH; CHAOTIC ATTRACTORS; HIDDEN ATTRACTORS; DIFFERENCE; STABILITY; NONEXISTENCE; OSCILLATIONS; EXISTENCE; SYSTEMS;
D O I
10.3390/math9182204
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies a system of coupled discrete fractional-order logistic maps, modeled by Caputo's delta fractional difference, regarding its numerical integration and chaotic dynamics. Some interesting new dynamical properties and unusual phenomena from this coupled chaotic-map system are revealed. Moreover, the coexistence of attractors, a necessary ingredient of the existence of hidden attractors, is proved and analyzed.
引用
收藏
页数:14
相关论文
共 51 条
  • [1] On Riemann and Caputo fractional differences
    Abdeljawad, Thabet
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) : 1602 - 1611
  • [2] Anastassiou G.A, 2009, ARXIV09113370
  • [3] Asymptotic properties of discrete linear fractional equations
    Anh, P. T.
    Babiarz, A.
    Czornik, A.
    Niezabitowski, M.
    Siegmund, S.
    [J]. BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2019, 67 (04) : 749 - 759
  • [4] [Anonymous], 1974, The fractional calculus theory and applications of differentiation and integration to arbitrary order, DOI DOI 10.1016/S0076-5392(09)60219-8
  • [5] [Anonymous], 2002, Fractional Calculus and Applied Analysis, DOI DOI 10.48550/ARXIV.MATH/0110241
  • [6] On Fractional Derivatives and Primitives of Periodic Functions
    Area, I.
    Losada, J.
    Nieto, J. J.
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [7] Atici FM, 2009, ELECTRON J QUAL THEO
  • [8] Convergence and periodicity of solutions for a class of difference systems
    Bin, Honghua
    Huang, Lihong
    Zhang, Guang
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2006, 2006 (1)
  • [9] ON EXPLICIT STABILITY CONDITIONS FOR A LINEAR FRACTIONAL DIFFERENCE SYSTEM
    Cermak, Jan
    Gyori, Istvan
    Nechvatal, Ludek
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (03) : 651 - 672
  • [10] Existence Results for Nonlinear Fractional Difference Equation
    Chen, Fulai
    Luo, Xiannan
    Zhou, Yong
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2011,