ON THE REAL ZEROS OF RANDOM TRIGONOMETRIC POLYNOMIALS WITH DEPENDENT COEFFICIENTS

被引:11
作者
Angst, Juergen [1 ]
Dalmao, Federico [2 ]
Poly, Guillaume [3 ]
机构
[1] Univ Rennes 1, Inst Rech Mathemat Rennes, F-35042 Rennes 1, France
[2] Univ La Republ, Dept Matemat & Estadist Litoral, 25 Agosto 281, Salto 50000, Uruguay
[3] Univ Rennes 1, Inst Rech Mathemat Rennes, F-35042 Rennes 1, France
关键词
EXPECTED NUMBER; AVERAGE NUMBER; ROOTS;
D O I
10.1090/proc/14216
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider random trigonometric polynomials of the form f(n)(t) := Sigma(1 <= k <= n) a(k) cos(kt) + b(k) sin(kt), whose coefficients (a(k))(k > 1) and (b(k))(k>1) are given by two independent stationary Gaussian processes with the same correlation function rho. Under mild assumptions on the spectral function psi(rho) associated with rho, we prove that the expectation of the number N-n([0, 2 pi]) of real roots of f(n) in the interval [0, 2 pi] satisfies lim(n ->+infinity) E[N-n([0,2 pi])]/n = 2/root 3. The latter result not only covers the well-known situation of independent coefficients but allows us to deal with longrange correlations. In particular, it includes the case where the random coefficients are given by a fractional Brownian noise with any Hurst parameter.
引用
收藏
页码:205 / 214
页数:10
相关论文
共 27 条
[1]  
Angst Jurgen, 2015, ARXIV151108750
[2]  
[Anonymous], 1968, VESTNIK LENINGRAD U
[3]  
[Anonymous], 2002, TRIGONOMETRIC SERIES, DOI DOI 10.1017/CBO9781316036587
[4]   CLT for the zeros of classical random trigonometric polynomials [J].
Azais, Jean-Marc ;
Dalmao, Federico ;
Leon, Jose R. .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (02) :804-820
[5]   CLT for crossings of random trigonometric polynomials [J].
Azais, Jean-Marc ;
Leon, Jose R. .
ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18
[6]  
Azais Jean-Marc, 2015, ARXIV151205583
[7]  
Bary N. K., 1964, TREATISE TRIGONOMETR, VI
[8]  
BERAN J., 1994, MONOGRAPHS STAT APPL, V61
[9]   Entire functions of exponential type represented by pseudo-random and random Taylor series [J].
Borichev, Alexander ;
Nishry, Alon ;
Sodin, Mikhail .
JOURNAL D ANALYSE MATHEMATIQUE, 2017, 133 (01) :361-396
[10]  
DUNNAGE JEA, 1966, P LOND MATH SOC, V16, P53