Validation and Uncertainty Quantification for Two-Phase Natural Circulation Flows Using TRACE Code

被引:6
作者
Borowiec, Katarzyna [1 ]
Kozlowski, Tomasz [1 ]
Brooks, Caleb S. [1 ]
机构
[1] Univ Illinois, Dept Nucl Plasma & Radiol Engn, 104 South Wright St, Urbana, IL 61801 USA
关键词
TRACE; natural circulation sensitivity study; two-phase flow; SENSITIVITY-ANALYSIS; DESIGN;
D O I
10.1080/00295639.2020.1713671
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The work presents validation of the TRAC/RELAP Advanced Computational Engine (TRACE) code for natural circulation two-phase flow in a vertical annulus. Natural circulation experiments were recently conducted for a vertical internally heated annulus at the Multiphase Thermo-Fluid Dynamics Laboratory at the University of Illinois. The experimental matrix consists of 107 experiments with system pressure in the range of 145 to 950 kPa and heat flux up to 275 kW/m(2). Void fraction, gas velocity, and interfacial area concentration were measured in five axial locations along the test section with six measurements of bulk liquid temperature and pressure. To validate the capability of the TRACE code under natural circulation flow conditions, a complete model of the experimental facility was created and validated using forced convection and single-phase natural circulation data. Sensitivity and uncertainty quantification were performed. The sensitivity to important simulation parameters was studied using Sobol's variance decomposition and the Morris screening method. The sensitivity of boundary conditions on void fraction measurement was investigated. The sensitivity study has shown significant differences in model sensitivity between different experimental conditions. With heat flux being the most influential parameter for high-pressure cases without flashing and pressure, temperature and heat flux have a combined strong effect in the case of low-pressure experiments when flashing occurs. Additionally, higher uncertainty in void fraction prediction was observed for experimental conditions at low pressure with flashing.
引用
收藏
页码:737 / 747
页数:11
相关论文
共 15 条
[1]  
BERRY R.A, 2014, INLEXT1431366
[2]   EXTENSION OF CFD CODES APPLICATION TO TWO-PHASE FLOW SAFETY PROBLEMS [J].
Bestion, Dominique .
NUCLEAR ENGINEERING AND TECHNOLOGY, 2010, 42 (04) :365-376
[3]  
BOROWIEC K., 2019, 18 INT TOP M NUCL RE
[4]   An effective screening design for sensitivity analysis of large models [J].
Campolongo, Francesca ;
Cariboni, Jessica ;
Saltelli, Andrea .
ENVIRONMENTAL MODELLING & SOFTWARE, 2007, 22 (10) :1509-1518
[5]   Trends in sensitivity analysis practice in the last decade [J].
Ferretti, Federico ;
Saltelli, Andrea ;
Tarantola, Stefano .
SCIENCE OF THE TOTAL ENVIRONMENT, 2016, 568 :666-670
[6]   Validation of RELAP5/MOD3.3 for subcooled boiling, flashing and condensation in a vertical annulus [J].
Fullmer, William D. ;
Kumar, Vineet ;
Brooks, Caleb S. .
PROGRESS IN NUCLEAR ENERGY, 2016, 93 :205-217
[7]   Experimental study on bubble velocity, void fraction and pressure drop for gas-liquid two-phase flow in a circular microchannel [J].
Kawahara, Akimaro ;
Sadatomi, Michio ;
Nei, Keitaro ;
Matsuo, Hideki .
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2009, 30 (05) :831-841
[8]   Capability of the RELAP5 code to simulate natural circulation behavior in test facilities [J].
Mangal, Amit ;
Jain, Vikas ;
Nayak, A. K. .
PROGRESS IN NUCLEAR ENERGY, 2012, 61 :1-16
[9]  
Misale M., 1999, Int. J. Therm. Sci, V38, P977, DOI [10.1016/S1290-0729(99)00106-4, DOI 10.1016/S1290-0729(99)00106-4]
[10]   FACTORIAL SAMPLING PLANS FOR PRELIMINARY COMPUTATIONAL EXPERIMENTS [J].
MORRIS, MD .
TECHNOMETRICS, 1991, 33 (02) :161-174