Evaluation of different machine learning models for predicting and mapping the susceptibility of gully erosion

被引:196
|
作者
Rahmati, Omid [1 ]
Tahmasebipour, Nasser [1 ]
Haghizadeh, Ali [1 ]
Pourghasemi, Hamid Reza [2 ]
Feizizadeh, Bakhtiar [3 ]
机构
[1] Lorestan Univ, Fac Nat Resources & Agr, Dept Watershed Management, Lorestan, Iran
[2] Shiraz Univ, Dept Nat Resources & Environm Engn, Coll Agr, Shiraz, Iran
[3] Univ Tabriz, Dept Remote Sensing & GIS, Tabriz 51368, Iran
关键词
Gully erosion; Spatial prediction; Machine learning; Robustness; ARTIFICIAL NEURAL-NETWORK; SUPPORT VECTOR MACHINE; TOPOGRAPHIC WETNESS INDEX; ANALYTICAL HIERARCHY PROCESS; CATCHMENT NORTHERN CALABRIA; BINARY LOGISTIC-REGRESSION; WEIGHTS-OF-EVIDENCE; HOA BINH PROVINCE; LANDSLIDE SUSCEPTIBILITY; SOIL-EROSION;
D O I
10.1016/j.geomorph.2017.09.006
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Gully erosion constitutes a serious problem for land degradation in a wide range of environments. The main objective of this research was to compare the performance of seven state-of-the-art machine learning models (SVM with four kernel types, BP-ANN, RF, and BRT) to model the occurrence of gully erosion in the Kashkan-Poldokhtar Watershed, Iran. In the first step, a gully inventory map consisting of 65 gully polygons was prepared through field surveys. Three different sample data sets (S1, S2, and S3), including both positive and negative cells (70% for training and 30% for validation), were randomly prepared to evaluate the robustness of the models. To model the gully erosion susceptibility, 12 geo-environmental factors were selected as predictors. Finally, the goodness-of-fit and prediction skill of the models were evaluated by different criteria, including efficiency percent, kappa coefficient, and the area under the ROC curves (AUC). In terms of accuracy, the RF, RBF-SVM, BRT, and P-SVM models performed excellently both in the degree of fitting and in predictive performance (AUC values well above 0.9), which resulted in accurate predictions. Therefore, these models can be used in other gully erosion studies, as they are capable of rapidly producing accurate and robust gully erosion susceptibility maps (GESMs) for decision-making and soil and water management practices. Furthermore, it was found that performance of RF and RBF-SVM for modelling gully erosion occurrence is quite stable when the learning and validation samples are changed. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:118 / 137
页数:20
相关论文
共 50 条
  • [1] Comparison of machine learning models for gully erosion susceptibility mapping
    Alireza Arabameri
    Wei Chen
    Marco Loche
    Xia Zhao
    Yang Li
    Luigi Lombardo
    Artemi Cerda
    Biswajeet Pradhan
    Dieu Tien Bui
    Geoscience Frontiers, 2020, 11 (05) : 1609 - 1620
  • [2] Comparison of machine learning models for gully erosion susceptibility mapping
    Alireza Arabameri
    Wei Chen
    Marco Loche
    Xia Zhao
    Yang Li
    Luigi Lombardo
    Artemi Cerda
    Biswajeet Pradhan
    Dieu Tien Bui
    Geoscience Frontiers , 2020, (05) : 1609 - 1620
  • [3] Comparison of machine learning models for gully erosion susceptibility mapping
    Arabameri, Alireza
    Chen, Wei
    Loche, Marco
    Zhao, Xia
    Li, Yang
    Lombardo, Luigi
    Cerda, Artemi
    Pradhan, Biswajeet
    Dieu Tien Bui
    GEOSCIENCE FRONTIERS, 2020, 11 (05) : 1609 - 1620
  • [4] Machine Learning Techniques for Gully Erosion Susceptibility Mapping: A Review
    Mohebzadeh, Hamid
    Biswas, Asim
    Rudra, Ramesh
    Daggupati, Prasad
    GEOSCIENCES, 2022, 12 (12)
  • [5] Gully Erosion Susceptibility Mapping in Highly Complex Terrain Using Machine Learning Models
    Yang, Annan
    Wang, Chunmei
    Pang, Guowei
    Long, Yongqing
    Wang, Lei
    Cruse, Richard M.
    Yang, Qinke
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (10)
  • [6] Evaluation of the gully erosion susceptibility by using UAV and hybrid models based on machine learning
    Wang, Qian
    Tang, Bohui
    Wang, Kailin
    Shi, Jiannan
    Li, Meiling
    SOIL & TILLAGE RESEARCH, 2024, 244
  • [7] Ensemble of Machine-Learning Methods for Predicting Gully Erosion Susceptibility
    Pal, Subodh Chandra
    Arabameri, Alireza
    Blaschke, Thomas
    Chowdhuri, Indrajit
    Saha, Asish
    Chakrabortty, Rabin
    Lee, Saro
    Band, Shahab. S.
    REMOTE SENSING, 2020, 12 (22) : 1 - 25
  • [8] Gully erosion susceptibility prediction in Mollisols using machine learning models
    Wang, Y.
    Zhang, Y.
    Chen, H.
    JOURNAL OF SOIL AND WATER CONSERVATION, 2023, 78 (05) : 385 - 396
  • [9] Hybrid Machine Learning Approach for Gully Erosion Mapping Susceptibility at a Watershed Scale
    Hitouri, Sliman
    Varasano, Antonietta
    Mohajane, Meriame
    Ijlil, Safae
    Essahlaoui, Narjisse
    Ali, Sk Ajim
    Essahlaoui, Ali
    Quoc Bao Pham
    Waleed, Mirza
    Palateerdham, Sasi Kiran
    Teodoro, Ana Claudia
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 11 (07)
  • [10] Point and pixel inclusive machine learning models for exploring gully erosion susceptibility
    Pal, Swades
    Debanshi, Sandipta
    Paul, Satyajit
    GEOCARTO INTERNATIONAL, 2022, 37 (27) : 16188 - 16211